Finite Rank Torsion Free Abelian Groups and Rings:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1982
|
Schriftenreihe: | Lecture notes in mathematics
931 |
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 BTW01 DMM01 EUV01 FAW01 FHA01 FHI01 FHM01 FKE01 FLA01 HTW01 LCO01 TUM01 UBA01 UBG01 UBM01 UBR01 UBT01 UBY01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783540115571 |
DOI: | 10.1007/BFb0094245 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV041962980 | ||
003 | DE-604 | ||
005 | 20180726 | ||
007 | cr|uuu---uuuuu | ||
008 | 140709s1982 |||| o||u| ||||||eng d | ||
020 | |a 9783540115571 |c Online |9 978-3-540-11557-1 | ||
024 | 7 | |a 10.1007/BFb0094245 |2 doi | |
035 | |a (OCoLC)838038860 | ||
035 | |a (DE-599)BVBBV041962980 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 |a DE-703 |a DE-29 |a DE-19 |a DE-91 |a DE-739 |a DE-355 |a DE-Aug4 |a DE-860 |a DE-M347 |a DE-70 |a DE-210 |a DE-634 |a DE-859 |a DE-706 |a DE-1046 |a DE-526 |a DE-521 |a DE-384 |a DE-573 |a DE-523 | ||
082 | 0 | |a 512.2 | |
100 | 1 | |a Arnold, David M. |d 1938- |e Verfasser |0 (DE-588)1064689140 |4 aut | |
245 | 1 | 0 | |a Finite Rank Torsion Free Abelian Groups and Rings |c David M. Arnold |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1982 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 931 | |
650 | 0 | 7 | |a Abelsche Gruppe |0 (DE-588)4140988-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Torsionsfreier Modul |0 (DE-588)4473140-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutativer Ring |0 (DE-588)4164825-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Torsionsfreie Abelsche Gruppe |0 (DE-588)4311189-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Torsionsfreie Gruppe |0 (DE-588)4311186-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Endlicher Rang |0 (DE-588)4487848-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Endlicher Rang |0 (DE-588)4487848-5 |D s |
689 | 0 | 1 | |a Torsionsfreie Abelsche Gruppe |0 (DE-588)4311189-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Abelsche Gruppe |0 (DE-588)4140988-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Kommutativer Ring |0 (DE-588)4164825-0 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Torsionsfreier Modul |0 (DE-588)4473140-1 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Torsionsfreie Gruppe |0 (DE-588)4311186-5 |D s |
689 | 4 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-540-39234-7 |
830 | 0 | |a Lecture notes in mathematics |v 931 |w (DE-604)BV014303148 |9 931 | |
856 | 4 | 0 | |u https://doi.org/10.1007/BFb0094245 |x Verlag |3 Volltext |
912 | |a ZDB-1-SLN | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027405763 | ||
966 | e | |u https://doi.org/10.1007/BFb0094245 |l BSB01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l BTU01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l BTW01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l DMM01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l EUV01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l FAW01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l FHA01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l FHI01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l FHM01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l FKE01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l FLA01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l HTW01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l LCO01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l TUM01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l UBA01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l UBG01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l UBM01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l UBR01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l UBT01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l UBY01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l UER01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0094245 |l UPA01 |p ZDB-1-SLN |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152350592466944 |
---|---|
any_adam_object | |
author | Arnold, David M. 1938- |
author_GND | (DE-588)1064689140 |
author_facet | Arnold, David M. 1938- |
author_role | aut |
author_sort | Arnold, David M. 1938- |
author_variant | d m a dm dma |
building | Verbundindex |
bvnumber | BV041962980 |
collection | ZDB-1-SLN |
ctrlnum | (OCoLC)838038860 (DE-599)BVBBV041962980 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/BFb0094245 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04084nmm a2200805zcb4500</leader><controlfield tag="001">BV041962980</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180726 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">140709s1982 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540115571</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-11557-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BFb0094245</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)838038860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041962980</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arnold, David M.</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1064689140</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Rank Torsion Free Abelian Groups and Rings</subfield><subfield code="c">David M. Arnold</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">931</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abelsche Gruppe</subfield><subfield code="0">(DE-588)4140988-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Torsionsfreier Modul</subfield><subfield code="0">(DE-588)4473140-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutativer Ring</subfield><subfield code="0">(DE-588)4164825-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Torsionsfreie Abelsche Gruppe</subfield><subfield code="0">(DE-588)4311189-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Torsionsfreie Gruppe</subfield><subfield code="0">(DE-588)4311186-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endlicher Rang</subfield><subfield code="0">(DE-588)4487848-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endlicher Rang</subfield><subfield code="0">(DE-588)4487848-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Torsionsfreie Abelsche Gruppe</subfield><subfield code="0">(DE-588)4311189-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Abelsche Gruppe</subfield><subfield code="0">(DE-588)4140988-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kommutativer Ring</subfield><subfield code="0">(DE-588)4164825-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Torsionsfreier Modul</subfield><subfield code="0">(DE-588)4473140-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Torsionsfreie Gruppe</subfield><subfield code="0">(DE-588)4311186-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-540-39234-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">931</subfield><subfield code="w">(DE-604)BV014303148</subfield><subfield code="9">931</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SLN</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027405763</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">BTW01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">DMM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">EUV01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">LCO01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0094245</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV041962980 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:09:19Z |
institution | BVB |
isbn | 9783540115571 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027405763 |
oclc_num | 838038860 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG DE-703 DE-29 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-739 DE-355 DE-BY-UBR DE-Aug4 DE-860 DE-M347 DE-70 DE-210 DE-634 DE-859 DE-706 DE-1046 DE-526 DE-521 DE-384 DE-573 DE-523 |
owner_facet | DE-12 DE-473 DE-BY-UBG DE-703 DE-29 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-739 DE-355 DE-BY-UBR DE-Aug4 DE-860 DE-M347 DE-70 DE-210 DE-634 DE-859 DE-706 DE-1046 DE-526 DE-521 DE-384 DE-573 DE-523 |
physical | 1 Online-Ressource |
psigel | ZDB-1-SLN |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Arnold, David M. 1938- Verfasser (DE-588)1064689140 aut Finite Rank Torsion Free Abelian Groups and Rings David M. Arnold Berlin [u.a.] Springer 1982 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Lecture notes in mathematics 931 Abelsche Gruppe (DE-588)4140988-7 gnd rswk-swf Torsionsfreier Modul (DE-588)4473140-1 gnd rswk-swf Kommutativer Ring (DE-588)4164825-0 gnd rswk-swf Torsionsfreie Abelsche Gruppe (DE-588)4311189-0 gnd rswk-swf Torsionsfreie Gruppe (DE-588)4311186-5 gnd rswk-swf Endlicher Rang (DE-588)4487848-5 gnd rswk-swf Endlicher Rang (DE-588)4487848-5 s Torsionsfreie Abelsche Gruppe (DE-588)4311189-0 s DE-604 Abelsche Gruppe (DE-588)4140988-7 s Kommutativer Ring (DE-588)4164825-0 s Torsionsfreier Modul (DE-588)4473140-1 s Torsionsfreie Gruppe (DE-588)4311186-5 s Erscheint auch als Druckausgabe 978-3-540-39234-7 Lecture notes in mathematics 931 (DE-604)BV014303148 931 https://doi.org/10.1007/BFb0094245 Verlag Volltext |
spellingShingle | Arnold, David M. 1938- Finite Rank Torsion Free Abelian Groups and Rings Lecture notes in mathematics Abelsche Gruppe (DE-588)4140988-7 gnd Torsionsfreier Modul (DE-588)4473140-1 gnd Kommutativer Ring (DE-588)4164825-0 gnd Torsionsfreie Abelsche Gruppe (DE-588)4311189-0 gnd Torsionsfreie Gruppe (DE-588)4311186-5 gnd Endlicher Rang (DE-588)4487848-5 gnd |
subject_GND | (DE-588)4140988-7 (DE-588)4473140-1 (DE-588)4164825-0 (DE-588)4311189-0 (DE-588)4311186-5 (DE-588)4487848-5 |
title | Finite Rank Torsion Free Abelian Groups and Rings |
title_auth | Finite Rank Torsion Free Abelian Groups and Rings |
title_exact_search | Finite Rank Torsion Free Abelian Groups and Rings |
title_full | Finite Rank Torsion Free Abelian Groups and Rings David M. Arnold |
title_fullStr | Finite Rank Torsion Free Abelian Groups and Rings David M. Arnold |
title_full_unstemmed | Finite Rank Torsion Free Abelian Groups and Rings David M. Arnold |
title_short | Finite Rank Torsion Free Abelian Groups and Rings |
title_sort | finite rank torsion free abelian groups and rings |
topic | Abelsche Gruppe (DE-588)4140988-7 gnd Torsionsfreier Modul (DE-588)4473140-1 gnd Kommutativer Ring (DE-588)4164825-0 gnd Torsionsfreie Abelsche Gruppe (DE-588)4311189-0 gnd Torsionsfreie Gruppe (DE-588)4311186-5 gnd Endlicher Rang (DE-588)4487848-5 gnd |
topic_facet | Abelsche Gruppe Torsionsfreier Modul Kommutativer Ring Torsionsfreie Abelsche Gruppe Torsionsfreie Gruppe Endlicher Rang |
url | https://doi.org/10.1007/BFb0094245 |
volume_link | (DE-604)BV014303148 |
work_keys_str_mv | AT arnolddavidm finiteranktorsionfreeabeliangroupsandrings |