Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Berlin [u.a.]
Springer
1982
|
Schriftenreihe: | Lecture notes in mathematics
907 : Series: Forschungsinstitut für Mathematik, ETH Zürich |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783540389729 9783540111870 |
DOI: | 10.1007/BFb0094123 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV041962956 | ||
003 | DE-604 | ||
005 | 20181108 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 140709s1982 |||| o||u| ||||||ger d | ||
020 | |a 9783540389729 |c Online |9 978-3-540-38972-9 | ||
020 | |a 9783540111870 |c Print |9 978-3-540-11187-0 | ||
024 | 7 | |a 10.1007/BFb0094123 |2 doi | |
035 | |a (OCoLC)838037449 | ||
035 | |a (DE-599)BVBBV041962956 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-12 |a DE-473 |a DE-703 |a DE-29 |a DE-19 |a DE-91 |a DE-739 |a DE-355 |a DE-Aug4 |a DE-860 |a DE-M347 |a DE-70 |a DE-210 |a DE-634 |a DE-859 |a DE-706 |a DE-1046 |a DE-526 |a DE-92 |a DE-521 |a DE-384 |a DE-573 |a DE-523 | ||
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Schenzel, Peter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe |c Peter Schenzel |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1982 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 907 |a Series: Forschungsinstitut für Mathematik, ETH Zürich | |
502 | |a Zugl.: Zürich, Techn. Hochschule, Habil.-Schr. | ||
650 | 0 | 7 | |a Stellenalgebra |0 (DE-588)4183082-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dualisierender Komplex |0 (DE-588)4150798-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Buchsbaum-Ring |0 (DE-588)4132740-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Dualisierender Komplex |0 (DE-588)4150798-8 |D s |
689 | 0 | 1 | |a Stellenalgebra |0 (DE-588)4183082-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Buchsbaum-Ring |0 (DE-588)4132740-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Dualisierender Komplex |0 (DE-588)4150798-8 |D s |
689 | 2 | 1 | |a Buchsbaum-Ring |0 (DE-588)4132740-8 |D s |
689 | 2 | |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 907 : Series: Forschungsinstitut für Mathematik, ETH Zürich |w (DE-604)BV014303148 |9 907 | |
856 | 4 | 0 | |u https://doi.org/10.1007/BFb0094123 |x Verlag |3 Volltext |
912 | |a ZDB-1-SLN |a ZDB-2-BAD |a ZDB-2-LNM |a ZDB-2-SNA | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027405739 |
Datensatz im Suchindex
_version_ | 1804152350546329600 |
---|---|
any_adam_object | |
author | Schenzel, Peter |
author_facet | Schenzel, Peter |
author_role | aut |
author_sort | Schenzel, Peter |
author_variant | p s ps |
building | Verbundindex |
bvnumber | BV041962956 |
classification_tum | NAT 000 |
collection | ZDB-1-SLN ZDB-2-BAD ZDB-2-LNM ZDB-2-SNA |
ctrlnum | (OCoLC)838037449 (DE-599)BVBBV041962956 |
discipline | Allgemeine Naturwissenschaft |
doi_str_mv | 10.1007/BFb0094123 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02170nmm a2200517zcb4500</leader><controlfield tag="001">BV041962956</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181108 </controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">140709s1982 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540389729</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-38972-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540111870</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-11187-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BFb0094123</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)838037449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041962956</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schenzel, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe</subfield><subfield code="c">Peter Schenzel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">907</subfield><subfield code="a">Series: Forschungsinstitut für Mathematik, ETH Zürich</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Zugl.: Zürich, Techn. Hochschule, Habil.-Schr.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stellenalgebra</subfield><subfield code="0">(DE-588)4183082-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dualisierender Komplex</subfield><subfield code="0">(DE-588)4150798-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Buchsbaum-Ring</subfield><subfield code="0">(DE-588)4132740-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dualisierender Komplex</subfield><subfield code="0">(DE-588)4150798-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stellenalgebra</subfield><subfield code="0">(DE-588)4183082-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Buchsbaum-Ring</subfield><subfield code="0">(DE-588)4132740-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Dualisierender Komplex</subfield><subfield code="0">(DE-588)4150798-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Buchsbaum-Ring</subfield><subfield code="0">(DE-588)4132740-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">907 : Series: Forschungsinstitut für Mathematik, ETH Zürich</subfield><subfield code="w">(DE-604)BV014303148</subfield><subfield code="9">907</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/BFb0094123</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SLN</subfield><subfield code="a">ZDB-2-BAD</subfield><subfield code="a">ZDB-2-LNM</subfield><subfield code="a">ZDB-2-SNA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027405739</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV041962956 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:09:19Z |
institution | BVB |
isbn | 9783540389729 9783540111870 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027405739 |
oclc_num | 838037449 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG DE-703 DE-29 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-739 DE-355 DE-BY-UBR DE-Aug4 DE-860 DE-M347 DE-70 DE-210 DE-634 DE-859 DE-706 DE-1046 DE-526 DE-92 DE-521 DE-384 DE-573 DE-523 |
owner_facet | DE-12 DE-473 DE-BY-UBG DE-703 DE-29 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-739 DE-355 DE-BY-UBR DE-Aug4 DE-860 DE-M347 DE-70 DE-210 DE-634 DE-859 DE-706 DE-1046 DE-526 DE-92 DE-521 DE-384 DE-573 DE-523 |
physical | 1 Online-Ressource |
psigel | ZDB-1-SLN ZDB-2-BAD ZDB-2-LNM ZDB-2-SNA ZDB-2-SNA_Archive |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics Series: Forschungsinstitut für Mathematik, ETH Zürich |
spelling | Schenzel, Peter Verfasser aut Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe Peter Schenzel Berlin [u.a.] Springer 1982 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Lecture notes in mathematics 907 Series: Forschungsinstitut für Mathematik, ETH Zürich Zugl.: Zürich, Techn. Hochschule, Habil.-Schr. Stellenalgebra (DE-588)4183082-9 gnd rswk-swf Dualisierender Komplex (DE-588)4150798-8 gnd rswk-swf Buchsbaum-Ring (DE-588)4132740-8 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Dualisierender Komplex (DE-588)4150798-8 s Stellenalgebra (DE-588)4183082-9 s DE-604 Buchsbaum-Ring (DE-588)4132740-8 s Lecture notes in mathematics 907 : Series: Forschungsinstitut für Mathematik, ETH Zürich (DE-604)BV014303148 907 https://doi.org/10.1007/BFb0094123 Verlag Volltext |
spellingShingle | Schenzel, Peter Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe Lecture notes in mathematics Stellenalgebra (DE-588)4183082-9 gnd Dualisierender Komplex (DE-588)4150798-8 gnd Buchsbaum-Ring (DE-588)4132740-8 gnd |
subject_GND | (DE-588)4183082-9 (DE-588)4150798-8 (DE-588)4132740-8 (DE-588)4113937-9 |
title | Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe |
title_auth | Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe |
title_exact_search | Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe |
title_full | Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe Peter Schenzel |
title_fullStr | Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe Peter Schenzel |
title_full_unstemmed | Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe Peter Schenzel |
title_short | Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe |
title_sort | dualisierende komplexe in der lokalen algebra und buchsbaum ringe |
topic | Stellenalgebra (DE-588)4183082-9 gnd Dualisierender Komplex (DE-588)4150798-8 gnd Buchsbaum-Ring (DE-588)4132740-8 gnd |
topic_facet | Stellenalgebra Dualisierender Komplex Buchsbaum-Ring Hochschulschrift |
url | https://doi.org/10.1007/BFb0094123 |
volume_link | (DE-604)BV014303148 |
work_keys_str_mv | AT schenzelpeter dualisierendekomplexeinderlokalenalgebraundbuchsbaumringe |