The Approximation of Continuous Functions by Positive Linear Operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1972
|
Schriftenreihe: | Lecture notes in mathematics
293 |
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 BTW01 DMM01 EUV01 FAW01 FHA01 FHI01 FHM01 FKE01 FLA01 HTW01 LCO01 TUM01 UBA01 UBG01 UBM01 UBR01 UBT01 UBY01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (VIII, 289 S.) |
ISBN: | 0387060383 3540060383 9783540060383 |
DOI: | 10.1007/BFb0059493 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV041962362 | ||
003 | DE-604 | ||
005 | 20180831 | ||
007 | cr|uuu---uuuuu | ||
008 | 140709s1972 |||| o||u| ||||||eng d | ||
020 | |a 0387060383 |9 0-387-06038-3 | ||
020 | |a 3540060383 |9 3-540-06038-3 | ||
020 | |a 9783540060383 |c Online |9 978-3-540-06038-3 | ||
024 | 7 | |a 10.1007/BFb0059493 |2 doi | |
035 | |a (OCoLC)838002075 | ||
035 | |a (DE-599)BVBBV041962362 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 |a DE-703 |a DE-29 |a DE-19 |a DE-91 |a DE-739 |a DE-355 |a DE-Aug4 |a DE-860 |a DE-M347 |a DE-70 |a DE-210 |a DE-634 |a DE-859 |a DE-1046 |a DE-706 |a DE-526 |a DE-521 |a DE-384 |a DE-573 |a DE-523 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 515/.253 | |
082 | 0 | |a 510 | |
082 | 0 | |a 510/.8 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
100 | 1 | |a DeVore, Ronald A. |d 1941- |e Verfasser |0 (DE-588)108077969 |4 aut | |
245 | 1 | 0 | |a The Approximation of Continuous Functions by Positive Linear Operators |c Ronald A. de Vore |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1972 | |
300 | |a 1 Online-Ressource (VIII, 289 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 293 | |
650 | 4 | |a Approximations (Mathématiques) | |
650 | 7 | |a Continue fracties |2 gtt | |
650 | 4 | |a Fonctions continues | |
650 | 7 | |a Funcoes (Matematica) |2 larpcal | |
650 | 7 | |a Lineaire operatoren |2 gtt | |
650 | 7 | |a Operadores (Analise Funcional) |2 larpcal | |
650 | 4 | |a Opérateurs linéaires | |
650 | 4 | |a Approximation theory | |
650 | 4 | |a Functions, Continuous | |
650 | 4 | |a Linear operators | |
650 | 4 | |a Positive operators | |
650 | 0 | 7 | |a Approximationstheorie |0 (DE-588)4120913-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stetige Funktion |0 (DE-588)4183162-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stetige Funktion |0 (DE-588)4183162-7 |D s |
689 | 0 | 1 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-540-37995-9 |
830 | 0 | |a Lecture notes in mathematics |v 293 |w (DE-604)BV014303148 |9 293 | |
856 | 4 | 0 | |u https://doi.org/10.1007/BFb0059493 |x Verlag |3 Volltext |
912 | |a ZDB-1-SLN | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027405145 | ||
966 | e | |u https://doi.org/10.1007/BFb0059493 |l BSB01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l BTU01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l BTW01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l DMM01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l EUV01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l FAW01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l FHA01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l FHI01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l FHM01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l FKE01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l FLA01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l HTW01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l LCO01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l TUM01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l UBA01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l UBG01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l UBM01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l UBR01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l UBT01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l UBY01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l UER01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0059493 |l UPA01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
980 | 4 | |a (DE-12)AK05150703 |
Datensatz im Suchindex
_version_ | 1804152349201006592 |
---|---|
any_adam_object | |
author | DeVore, Ronald A. 1941- |
author_GND | (DE-588)108077969 |
author_facet | DeVore, Ronald A. 1941- |
author_role | aut |
author_sort | DeVore, Ronald A. 1941- |
author_variant | r a d ra rad |
building | Verbundindex |
bvnumber | BV041962362 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 |
collection | ZDB-1-SLN |
ctrlnum | (OCoLC)838002075 (DE-599)BVBBV041962362 |
dewey-full | 515/.253 510 510/.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis 510 - Mathematics |
dewey-raw | 515/.253 510 510/.8 |
dewey-search | 515/.253 510 510/.8 |
dewey-sort | 3515 3253 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/BFb0059493 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04195nmm a2200877zcb4500</leader><controlfield tag="001">BV041962362</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180831 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">140709s1972 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387060383</subfield><subfield code="9">0-387-06038-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540060383</subfield><subfield code="9">3-540-06038-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540060383</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-06038-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BFb0059493</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)838002075</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041962362</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.253</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510/.8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">DeVore, Ronald A.</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108077969</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Approximation of Continuous Functions by Positive Linear Operators</subfield><subfield code="c">Ronald A. de Vore</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 289 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">293</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Continue fracties</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions continues</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Funcoes (Matematica)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lineaire operatoren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operadores (Analise Funcional)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Opérateurs linéaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Continuous</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive operators</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stetige Funktion</subfield><subfield code="0">(DE-588)4183162-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stetige Funktion</subfield><subfield code="0">(DE-588)4183162-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-540-37995-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">293</subfield><subfield code="w">(DE-604)BV014303148</subfield><subfield code="9">293</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SLN</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027405145</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">BTW01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">DMM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">EUV01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">LCO01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0059493</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK05150703</subfield></datafield></record></collection> |
id | DE-604.BV041962362 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:09:18Z |
institution | BVB |
isbn | 0387060383 3540060383 9783540060383 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027405145 |
oclc_num | 838002075 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG DE-703 DE-29 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-739 DE-355 DE-BY-UBR DE-Aug4 DE-860 DE-M347 DE-70 DE-210 DE-634 DE-859 DE-1046 DE-706 DE-526 DE-521 DE-384 DE-573 DE-523 |
owner_facet | DE-12 DE-473 DE-BY-UBG DE-703 DE-29 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-739 DE-355 DE-BY-UBR DE-Aug4 DE-860 DE-M347 DE-70 DE-210 DE-634 DE-859 DE-1046 DE-706 DE-526 DE-521 DE-384 DE-573 DE-523 |
physical | 1 Online-Ressource (VIII, 289 S.) |
psigel | ZDB-1-SLN |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | DeVore, Ronald A. 1941- Verfasser (DE-588)108077969 aut The Approximation of Continuous Functions by Positive Linear Operators Ronald A. de Vore Berlin [u.a.] Springer 1972 1 Online-Ressource (VIII, 289 S.) txt rdacontent c rdamedia cr rdacarrier Lecture notes in mathematics 293 Approximations (Mathématiques) Continue fracties gtt Fonctions continues Funcoes (Matematica) larpcal Lineaire operatoren gtt Operadores (Analise Funcional) larpcal Opérateurs linéaires Approximation theory Functions, Continuous Linear operators Positive operators Approximationstheorie (DE-588)4120913-8 gnd rswk-swf Stetige Funktion (DE-588)4183162-7 gnd rswk-swf Stetige Funktion (DE-588)4183162-7 s Approximationstheorie (DE-588)4120913-8 s DE-604 Erscheint auch als Druckausgabe 978-3-540-37995-9 Lecture notes in mathematics 293 (DE-604)BV014303148 293 https://doi.org/10.1007/BFb0059493 Verlag Volltext |
spellingShingle | DeVore, Ronald A. 1941- The Approximation of Continuous Functions by Positive Linear Operators Lecture notes in mathematics Approximations (Mathématiques) Continue fracties gtt Fonctions continues Funcoes (Matematica) larpcal Lineaire operatoren gtt Operadores (Analise Funcional) larpcal Opérateurs linéaires Approximation theory Functions, Continuous Linear operators Positive operators Approximationstheorie (DE-588)4120913-8 gnd Stetige Funktion (DE-588)4183162-7 gnd |
subject_GND | (DE-588)4120913-8 (DE-588)4183162-7 |
title | The Approximation of Continuous Functions by Positive Linear Operators |
title_auth | The Approximation of Continuous Functions by Positive Linear Operators |
title_exact_search | The Approximation of Continuous Functions by Positive Linear Operators |
title_full | The Approximation of Continuous Functions by Positive Linear Operators Ronald A. de Vore |
title_fullStr | The Approximation of Continuous Functions by Positive Linear Operators Ronald A. de Vore |
title_full_unstemmed | The Approximation of Continuous Functions by Positive Linear Operators Ronald A. de Vore |
title_short | The Approximation of Continuous Functions by Positive Linear Operators |
title_sort | the approximation of continuous functions by positive linear operators |
topic | Approximations (Mathématiques) Continue fracties gtt Fonctions continues Funcoes (Matematica) larpcal Lineaire operatoren gtt Operadores (Analise Funcional) larpcal Opérateurs linéaires Approximation theory Functions, Continuous Linear operators Positive operators Approximationstheorie (DE-588)4120913-8 gnd Stetige Funktion (DE-588)4183162-7 gnd |
topic_facet | Approximations (Mathématiques) Continue fracties Fonctions continues Funcoes (Matematica) Lineaire operatoren Operadores (Analise Funcional) Opérateurs linéaires Approximation theory Functions, Continuous Linear operators Positive operators Approximationstheorie Stetige Funktion |
url | https://doi.org/10.1007/BFb0059493 |
volume_link | (DE-604)BV014303148 |
work_keys_str_mv | AT devoreronalda theapproximationofcontinuousfunctionsbypositivelinearoperators |