The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1971
|
Schriftenreihe: | Lecture notes in mathematics
208 |
Online-Zugang: | BSB01 BTU01 BTW01 DMM01 EUV01 FAW01 FHA01 FHI01 FHM01 FKE01 FLA01 HTW01 LCO01 TUM01 UBA01 UBG01 UBM01 UBR01 UBT01 UBY01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783540054993 |
DOI: | 10.1007/BFb0069608 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV041962278 | ||
003 | DE-604 | ||
005 | 20161117 | ||
007 | cr|uuu---uuuuu | ||
008 | 140709s1971 |||| o||u| ||||||eng d | ||
020 | |a 9783540054993 |c Online |9 978-3-540-05499-3 | ||
024 | 7 | |a 10.1007/BFb0069608 |2 doi | |
035 | |a (OCoLC)837997086 | ||
035 | |a (DE-599)BVBBV041962278 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 |a DE-703 |a DE-29 |a DE-19 |a DE-91 |a DE-739 |a DE-355 |a DE-Aug4 |a DE-860 |a DE-M347 |a DE-70 |a DE-210 |a DE-634 |a DE-859 |a DE-1046 |a DE-706 |a DE-526 |a DE-521 |a DE-384 |a DE-573 |a DE-523 | ||
082 | 0 | |a 512.2 | |
100 | 1 | |a Grothendieck, Alexander |d 1928-2014 |e Verfasser |0 (DE-588)118952773 |4 aut | |
245 | 1 | 0 | |a The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme |c Alexander Grothendieck ; Jacob P. Murre |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1971 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 208 | |
700 | 1 | |a Murre, Jacob P. |d 1929- |e Verfasser |0 (DE-588)1036574989 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-540-36857-1 |
830 | 0 | |a Lecture notes in mathematics |v 208 |w (DE-604)BV014303148 |9 208 | |
856 | 4 | 0 | |u https://doi.org/10.1007/BFb0069608 |x Verlag |3 Volltext |
912 | |a ZDB-1-SLN | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027405061 | ||
966 | e | |u https://doi.org/10.1007/BFb0069608 |l BSB01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l BTU01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l BTW01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l DMM01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l EUV01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l FAW01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l FHA01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l FHI01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l FHM01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l FKE01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l FLA01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l HTW01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l LCO01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l TUM01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l UBA01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l UBG01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l UBM01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l UBR01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l UBT01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l UBY01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l UER01 |p ZDB-1-SLN |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/BFb0069608 |l UPA01 |p ZDB-1-SLN |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152349037428736 |
---|---|
any_adam_object | |
author | Grothendieck, Alexander 1928-2014 Murre, Jacob P. 1929- |
author_GND | (DE-588)118952773 (DE-588)1036574989 |
author_facet | Grothendieck, Alexander 1928-2014 Murre, Jacob P. 1929- |
author_role | aut aut |
author_sort | Grothendieck, Alexander 1928-2014 |
author_variant | a g ag j p m jp jpm |
building | Verbundindex |
bvnumber | BV041962278 |
collection | ZDB-1-SLN |
ctrlnum | (OCoLC)837997086 (DE-599)BVBBV041962278 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/BFb0069608 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03362nmm a2200613zcb4500</leader><controlfield tag="001">BV041962278</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20161117 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">140709s1971 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540054993</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-05499-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BFb0069608</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)837997086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041962278</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grothendieck, Alexander</subfield><subfield code="d">1928-2014</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118952773</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme</subfield><subfield code="c">Alexander Grothendieck ; Jacob P. Murre</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1971</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">208</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murre, Jacob P.</subfield><subfield code="d">1929-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1036574989</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-540-36857-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">208</subfield><subfield code="w">(DE-604)BV014303148</subfield><subfield code="9">208</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SLN</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027405061</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">BTW01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">DMM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">EUV01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">LCO01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0069608</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV041962278 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:09:18Z |
institution | BVB |
isbn | 9783540054993 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027405061 |
oclc_num | 837997086 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG DE-703 DE-29 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-739 DE-355 DE-BY-UBR DE-Aug4 DE-860 DE-M347 DE-70 DE-210 DE-634 DE-859 DE-1046 DE-706 DE-526 DE-521 DE-384 DE-573 DE-523 |
owner_facet | DE-12 DE-473 DE-BY-UBG DE-703 DE-29 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-739 DE-355 DE-BY-UBR DE-Aug4 DE-860 DE-M347 DE-70 DE-210 DE-634 DE-859 DE-1046 DE-706 DE-526 DE-521 DE-384 DE-573 DE-523 |
physical | 1 Online-Ressource |
psigel | ZDB-1-SLN |
publishDate | 1971 |
publishDateSearch | 1971 |
publishDateSort | 1971 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Grothendieck, Alexander 1928-2014 Verfasser (DE-588)118952773 aut The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme Alexander Grothendieck ; Jacob P. Murre Berlin [u.a.] Springer 1971 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Lecture notes in mathematics 208 Murre, Jacob P. 1929- Verfasser (DE-588)1036574989 aut Erscheint auch als Druckausgabe 978-3-540-36857-1 Lecture notes in mathematics 208 (DE-604)BV014303148 208 https://doi.org/10.1007/BFb0069608 Verlag Volltext |
spellingShingle | Grothendieck, Alexander 1928-2014 Murre, Jacob P. 1929- The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme Lecture notes in mathematics |
title | The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme |
title_auth | The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme |
title_exact_search | The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme |
title_full | The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme Alexander Grothendieck ; Jacob P. Murre |
title_fullStr | The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme Alexander Grothendieck ; Jacob P. Murre |
title_full_unstemmed | The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme Alexander Grothendieck ; Jacob P. Murre |
title_short | The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme |
title_sort | the tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme |
url | https://doi.org/10.1007/BFb0069608 |
volume_link | (DE-604)BV014303148 |
work_keys_str_mv | AT grothendieckalexander thetamefundamentalgroupofaformalneighbourhoodofadivisorwithnormalcrossingsonascheme AT murrejacobp thetamefundamentalgroupofaformalneighbourhoodofadivisorwithnormalcrossingsonascheme |