Hypergeometric summation: an algorithmic approach to summation and special function identities
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London [u.a.]
Springer
2014
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | BTU01 FRO01 TUM01 UBA01 UBM01 UBT01 UBW01 UPA01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781447164630 9781447164647 |
DOI: | 10.1007/978-1-4471-6464-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV041946928 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 140701s2014 |||| o||u| ||||||eng d | ||
015 | |a 14,O07 |2 dnb | ||
016 | 7 | |a 1052061516 |2 DE-101 | |
020 | |a 9781447164630 |9 978-1-4471-6463-0 | ||
020 | |a 9781447164647 |c Online |9 978-1-4471-6464-7 | ||
024 | 7 | |a 10.1007/978-1-4471-6464-7 |2 doi | |
024 | 3 | |a 9781447164647 | |
035 | |a (OCoLC)882498921 | ||
035 | |a (DE-599)DNB1052061516 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 |a DE-739 |a DE-20 |a DE-19 |a DE-634 |a DE-861 |a DE-384 |a DE-83 | ||
082 | 0 | |a 510 | |
084 | |a MAT 000 |2 stub | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Koepf, Wolfram |d 1953- |e Verfasser |0 (DE-588)136291279 |4 aut | |
245 | 1 | 0 | |a Hypergeometric summation |b an algorithmic approach to summation and special function identities |c Wolfram Koepf |
250 | |a 2. ed. | ||
264 | 1 | |a London [u.a.] |b Springer |c 2014 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext | |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maple V 4.0 |0 (DE-588)4407788-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Summierungsverfahren |0 (DE-588)4308019-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzengleichung |0 (DE-588)4012264-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spezielle Funktion |0 (DE-588)4182213-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Summierungsverfahren |0 (DE-588)4308019-4 |D s |
689 | 0 | 1 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |D s |
689 | 0 | 2 | |a Spezielle Funktion |0 (DE-588)4182213-4 |D s |
689 | 0 | 3 | |a Differenzengleichung |0 (DE-588)4012264-5 |D s |
689 | 0 | 4 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 5 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | 6 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |D s |
689 | 1 | 1 | |a Spezielle Funktion |0 (DE-588)4182213-4 |D s |
689 | 1 | 2 | |a Summierungsverfahren |0 (DE-588)4308019-4 |D s |
689 | 1 | 3 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 1 | 4 | |a Maple V 4.0 |0 (DE-588)4407788-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-6464-7 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027389982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027389982&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027389982 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4471-6464-7 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4471-6464-7 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4471-6464-7 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4471-6464-7 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4471-6464-7 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4471-6464-7 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4471-6464-7 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4471-6464-7 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152325959319552 |
---|---|
adam_text | HYPERGEOMETRIC SUMMATION
/ KOEPF, WOLFRAM
: 2014
TABLE OF CONTENTS / INHALTSVERZEICHNIS
INTRODUCTION
THE GAMMA FUNCTION
HYPERGEOMETRIC IDENTITIES
HYPERGEOMETRIC DATABASE
HOLONOMIC RECURRENCE EQUATIONS
GOSPER’S ALGORITHM
THE WILF-ZEILBERGER METHOD
ZEILBERGER’S ALGORITHM
EXTENSIONS OF THE ALGORITHMS
PETKOVˇSEK’S AND VAN HOEIJ’S ALGORITHM
DIFFERENTIAL EQUATIONS FOR SUMS
HYPEREXPONENTIAL ANTIDERIVATIVES
HOLONOMIC EQUATIONS FOR INTEGRALS
RODRIGUES FORMULAS AND GENERATING FUNCTIONS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
HYPERGEOMETRIC SUMMATION
/ KOEPF, WOLFRAM
: 2014
ABSTRACT / INHALTSTEXT
MODERN ALGORITHMIC TECHNIQUES FOR SUMMATION, MOST OF WHICH WERE
INTRODUCED IN THE 1990S, ARE DEVELOPED HERE AND CAREFULLY IMPLEMENTED IN
THE COMPUTER ALGEBRA SYSTEM MAPLE™. THE ALGORITHMS OF FASENMYER,
GOSPER, ZEILBERGER, PETKOVSEK AND VAN HOEIJ FOR HYPERGEOMETRIC
SUMMATION AND RECURRENCE EQUATIONS, EFFICIENT MULTIVARIATE SUMMATION AS
WELL AS Q-ANALOGUES OF THE ABOVE ALGORITHMS ARE COVERED. SIMILAR
ALGORITHMS CONCERNING DIFFERENTIAL EQUATIONS ARE CONSIDERED. AN
EQUIVALENT THEORY OF HYPEREXPONENTIAL INTEGRATION DUE TO ALMKVIST AND
ZEILBERGER COMPLETES THE BOOK. THE COMBINATION OF THESE RESULTS GIVES
ORTHOGONAL POLYNOMIALS AND (HYPERGEOMETRIC AND Q-HYPERGEOMETRIC) SPECIAL
FUNCTIONS A SOLID ALGORITHMIC FOUNDATION. HENCE, MANY EXAMPLES FROM THIS
VERY ACTIVE FIELD ARE GIVEN. THE MATERIALS COVERED ARE SUITABLE FOR AN
INTRODUCTORY COURSE ON ALGORITHMIC SUMMATION AND WILL APPEAL TO STUDENTS
AND RESEARCHERS ALIKE
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Koepf, Wolfram 1953- |
author_GND | (DE-588)136291279 |
author_facet | Koepf, Wolfram 1953- |
author_role | aut |
author_sort | Koepf, Wolfram 1953- |
author_variant | w k wk |
building | Verbundindex |
bvnumber | BV041946928 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)882498921 (DE-599)DNB1052061516 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4471-6464-7 |
edition | 2. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04074nmm a2200817zc 4500</leader><controlfield tag="001">BV041946928</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">140701s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">14,O07</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1052061516</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447164630</subfield><subfield code="9">978-1-4471-6463-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447164647</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4471-6464-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-6464-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781447164647</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)882498921</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1052061516</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koepf, Wolfram</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136291279</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypergeometric summation</subfield><subfield code="b">an algorithmic approach to summation and special function identities</subfield><subfield code="c">Wolfram Koepf</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maple V 4.0</subfield><subfield code="0">(DE-588)4407788-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Summierungsverfahren</subfield><subfield code="0">(DE-588)4308019-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spezielle Funktion</subfield><subfield code="0">(DE-588)4182213-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Summierungsverfahren</subfield><subfield code="0">(DE-588)4308019-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Spezielle Funktion</subfield><subfield code="0">(DE-588)4182213-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Spezielle Funktion</subfield><subfield code="0">(DE-588)4182213-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Summierungsverfahren</subfield><subfield code="0">(DE-588)4308019-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Maple V 4.0</subfield><subfield code="0">(DE-588)4407788-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-6464-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027389982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027389982&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027389982</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-6464-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-6464-7</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-6464-7</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-6464-7</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-6464-7</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-6464-7</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-6464-7</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-6464-7</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV041946928 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:08:56Z |
institution | BVB |
isbn | 9781447164630 9781447164647 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027389982 |
oclc_num | 882498921 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM DE-739 DE-20 DE-19 DE-BY-UBM DE-634 DE-861 DE-384 DE-83 |
owner_facet | DE-703 DE-91 DE-BY-TUM DE-739 DE-20 DE-19 DE-BY-UBM DE-634 DE-861 DE-384 DE-83 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Koepf, Wolfram 1953- Verfasser (DE-588)136291279 aut Hypergeometric summation an algorithmic approach to summation and special function identities Wolfram Koepf 2. ed. London [u.a.] Springer 2014 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Universitext Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Maple V 4.0 (DE-588)4407788-9 gnd rswk-swf Summierungsverfahren (DE-588)4308019-4 gnd rswk-swf Hypergeometrische Reihe (DE-588)4161061-1 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Differenzengleichung (DE-588)4012264-5 gnd rswk-swf Spezielle Funktion (DE-588)4182213-4 gnd rswk-swf Summierungsverfahren (DE-588)4308019-4 s Hypergeometrische Reihe (DE-588)4161061-1 s Spezielle Funktion (DE-588)4182213-4 s Differenzengleichung (DE-588)4012264-5 s Differentialgleichung (DE-588)4012249-9 s Numerische Mathematik (DE-588)4042805-9 s Zahlentheorie (DE-588)4067277-3 s 1\p DE-604 Algorithmus (DE-588)4001183-5 s Maple V 4.0 (DE-588)4407788-9 s 2\p DE-604 https://doi.org/10.1007/978-1-4471-6464-7 Verlag Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027389982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027389982&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Koepf, Wolfram 1953- Hypergeometric summation an algorithmic approach to summation and special function identities Numerische Mathematik (DE-588)4042805-9 gnd Zahlentheorie (DE-588)4067277-3 gnd Maple V 4.0 (DE-588)4407788-9 gnd Summierungsverfahren (DE-588)4308019-4 gnd Hypergeometrische Reihe (DE-588)4161061-1 gnd Algorithmus (DE-588)4001183-5 gnd Differentialgleichung (DE-588)4012249-9 gnd Differenzengleichung (DE-588)4012264-5 gnd Spezielle Funktion (DE-588)4182213-4 gnd |
subject_GND | (DE-588)4042805-9 (DE-588)4067277-3 (DE-588)4407788-9 (DE-588)4308019-4 (DE-588)4161061-1 (DE-588)4001183-5 (DE-588)4012249-9 (DE-588)4012264-5 (DE-588)4182213-4 |
title | Hypergeometric summation an algorithmic approach to summation and special function identities |
title_auth | Hypergeometric summation an algorithmic approach to summation and special function identities |
title_exact_search | Hypergeometric summation an algorithmic approach to summation and special function identities |
title_full | Hypergeometric summation an algorithmic approach to summation and special function identities Wolfram Koepf |
title_fullStr | Hypergeometric summation an algorithmic approach to summation and special function identities Wolfram Koepf |
title_full_unstemmed | Hypergeometric summation an algorithmic approach to summation and special function identities Wolfram Koepf |
title_short | Hypergeometric summation |
title_sort | hypergeometric summation an algorithmic approach to summation and special function identities |
title_sub | an algorithmic approach to summation and special function identities |
topic | Numerische Mathematik (DE-588)4042805-9 gnd Zahlentheorie (DE-588)4067277-3 gnd Maple V 4.0 (DE-588)4407788-9 gnd Summierungsverfahren (DE-588)4308019-4 gnd Hypergeometrische Reihe (DE-588)4161061-1 gnd Algorithmus (DE-588)4001183-5 gnd Differentialgleichung (DE-588)4012249-9 gnd Differenzengleichung (DE-588)4012264-5 gnd Spezielle Funktion (DE-588)4182213-4 gnd |
topic_facet | Numerische Mathematik Zahlentheorie Maple V 4.0 Summierungsverfahren Hypergeometrische Reihe Algorithmus Differentialgleichung Differenzengleichung Spezielle Funktion |
url | https://doi.org/10.1007/978-1-4471-6464-7 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027389982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027389982&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT koepfwolfram hypergeometricsummationanalgorithmicapproachtosummationandspecialfunctionidentities |