Molten salts chemistry and technology:
"Applications include energy conversion (solar cells and fuel cells), heat storage, green solvents, metallurgy, nuclear industry, pharmaceutics and biotechnology"--
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Chichester
Wiley
2014
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Applications include energy conversion (solar cells and fuel cells), heat storage, green solvents, metallurgy, nuclear industry, pharmaceutics and biotechnology"-- |
Beschreibung: | Includes index. - Literaturangaben |
Beschreibung: | XXX, 600 S. Ill., graph. Darst. |
ISBN: | 9781118448731 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041932954 | ||
003 | DE-604 | ||
005 | 20140714 | ||
007 | t | ||
008 | 140625s2014 ad|| |||| 00||| eng d | ||
010 | |a 2013035011 | ||
020 | |a 9781118448731 |c cloth |9 978-1-118-44873-1 | ||
035 | |a (OCoLC)882437992 | ||
035 | |a (DE-599)GBV766808742 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-355 |a DE-11 | ||
050 | 0 | |a TP230 | |
082 | 0 | |a 546.34 |2 23 | |
084 | |a VE 6350 |0 (DE-625)147133:253 |2 rvk | ||
245 | 1 | 0 | |a Molten salts chemistry and technology |c ed. by Marcelle Gaune-Escard ; Geir Martin Haarberg |
250 | |a 1. publ. | ||
264 | 1 | |a Chichester |b Wiley |c 2014 | |
300 | |a XXX, 600 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes index. - Literaturangaben | ||
520 | 1 | |a "Applications include energy conversion (solar cells and fuel cells), heat storage, green solvents, metallurgy, nuclear industry, pharmaceutics and biotechnology"-- | |
650 | 0 | 7 | |a Salzschmelze |0 (DE-588)4051454-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Salzschmelze |0 (DE-588)4051454-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gaune-Escard, Marcelle |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-118-44882-3 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027376200&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027376200 |
Datensatz im Suchindex
_version_ | 1804152308596998144 |
---|---|
adam_text | Contents
List of Contributors
xxiii
Foreword
xxix
Preface
xxxi
1 ALUMINIUM
ELECTROLYSIS
1
1.1
Formation of CO2 and CO on Carbon Anodes in Molten Salts
3
J. Thonstad and E. Sandnes
1.
1.1
introduction
3
1.1.2
Results
3
1.1.2.1
Fluoride melts
3
1.1.2.2
Chloride melts
5
1.1.3
Discussion
7
1.1.4
Conclusion
8
References
8
1.2
Interaction of Carbon with Molten Salts-Chloride-Carbonate Melts
9
D. Fray
9
9
9
10
10
13
13
14
15
1.3
Anode Processes on Carbon in Chloride Melts with Dissolved Oxides
17
E. Sandnes, G. M.
Haarberg,
A. M. Martinez, K. S.
Osen
and
R. Tunold
1.3.1
Introduction
17
1.3.2
Electrochemical processes in chloride-oxide melts
18
1
.3.2.1
Cl2, CO and CO2 formation
18
1.3.2.2
Melt systems
18
1.3.3
Experimental
19
1.3.4
Results
19
1.2.1
Introduction
1.2.2
Carbon as an anode in molten salt cells
1.2.2.1
Inert anodes
1.2.2.2
Reactive anodes
1.2.3
Carbon in the form of carbonate ions
1.2.4
Carbon in the form of carbide ions
1.2.5
Carbon as a cathode
1.2.6
Conclusions
References
1.4.1
Introduction
1.4.2
Cell designs with inert anodes and wettable cathodes
1.4.3
Electrolytes with low melting temperature
1.4.4
Energetic aspects
1.4.5
Material problems
1.4.6
Conclusion
Acknowledgments
References
vi
Contents
1.3.4.1
Cyclic voltammograms in the NaCl-Na^O and NaCi-^O
+
CaClo-CaO
systems
19
1.3.4.2
Stationary polarisation curves and gaseous products
21
1.3.4.3
Gas composition
22
1.3.4.4
Previous investigations
24
1.3.4.5
Adsorption capacitance and diffusion impedance from electrochemical
impedance spectroscopy
24
1.3.5
Discussion and conclusions
24
References
25
1.4
Aluminium Electrolysis with Inert Anodes and Wettable Cathodes and with Low Energy
Consumption
27
L
Galasiu and R. Galasiu
27
28
32
33
34
35
36
36
1.5
Influence of the Sulfur Content in the Carbon Anodes in Aluminum Electrolysis
-
a
Laboratory Study
39
S. PietrzykandJ. Thonstad
39
41
44
44
50
50
5Ì
51
1.6
Aluminum Electrolysis in an Inert Anode Cell
53
0.
Tkacheva, J.
Spangenberger,
В.
Davis, and
J. Hryn
53
54
54
55
59
61
61
61
62
1.5.1
Introduction
1.5.2
Experimental
1.5.2.1
Experimental conditions
1.5.3
Results
1.5.4
Discussion
1.5.5
Conclusions
Acknowledgments
References
1.6.1
Introduction
1.6.2
Experimental
1.6.2.1
Setup
1.6.2.2
Electrolyte
1.6.3
Current efficiency
1.6.4
Liquidtis temperature
1.6.5
Electrolysis
1.6.5.1
Electrolyte KF-AIF,
1.6.5.2
Sodium fluoride impact
Contents
vii
1.6.5.3
Voltage anomalies
64
1.6.5.4
Anode
67
1.6.6
Conclusions
67
Acknowledgments
68
References
68
1.7
Effect of Phosphorus Impurities on the Current Efficiency for Aluminium Deposition
from Cryolite-Alumina Melts in a Laboratory Cell
71
R. Meirbekova, G. M.
Haarberg
and
G. Sœvarsdottir
1.7.1
Introduction
71
1.7.2
Experimental method
72
1.7.3
Results and discussion
73
1.7.3.1
Effect of current density
73
1.7.3.2
Effect of phosphorus
74
1.7.4
Conclusions
74
Acknowledgments
75
References
75
1.8
Influence of
LOI on
Alumina Dissolution in Molten Aluminum Electrolyte
77
Ύ.
Yang, B.
Gao,
X. Hu,
Z.
Wang, and
Z.
Shi
1.8.1
Introduction
77
1.8.2
Experimental
77
1.8.2.1
Chemicals
77
1.8.2.2
Experimental method and apparatus for alumina dissolution rate
measurement
78
1.8.3
Results and discussion
79
1.8.3.1
LOI
of aluminas prepared at different temperatures
79
1.8.3.2
Dissolution performance of /-AbO, (calcined at 8()0°C for I h)
79
1.8.3.3
Dissolution rate of aluminas with different
LOI
80
1.8.3.4
Influence of specific surface area on dissolution rate of alumina
80
1.8.3.5
LOI
on average dissolution rate
80
1.8.4
Conclusions
83
Acknowledgments
83
References
83
1.9
The Electrolytic Production of Al-Cu-Li Master Alloy by Molten Salts Electrolysis
85
B.
Gao,
S.
Wang,
J. Qu, Z. Shi, X. Hu, and Z.
Wang
1.9.1
Introduction
85
1.9.2
Experimental
86
1.9.2.1
Chemicals
86
1.9.2.2
Electrochemical measurements
86
1.9.2.3
Reaction vessel and electrowinning cell
87
1.9.3
Results and discussion
87
1.9.3.1
Electrochemical studies of LiF-LiCi^O melt
87
1.9.3.2
Electrolysis
92
ми
Contents
1.9.4
Conclusions
Acknowledgments
References
92
93
93
1.10
Transference Numbers in Na(K) Cryoiite-Based Systems
J. Hives, P. Fellner, and]. Thonstad
1.
10.1
Introduction
1.10.2
Experimental
1.10.2.1
Chemicals
1.10.2.2
Apparatus and experimental procedure
1.10.2.3
Analysis
1.10.3
Results and discussion
1.10.4
Conclusions
Acknowledgments
References
95
95
96
96
96
98
98
99
101
101
1.11 125
years of the
Hall-Héroult
Process
O.-A. Lorentsen
What Made It a Success?
1.
11.1
Introduction
1.11.2
Development of an industrial process for production of aluminum
1.11.2.1
The
Hall-Héroult
Process
1.1
1
.2.2
The Bayer process
1.11.3
Some important process parameters
1.3.1
Electrolyte
.3.2
Anode
.3.3
Cell construction
.3.4
Alumina feeding and control
1
.3.5
Aluminum metal tapping
1.3.6
Environment
1.4
Technological macro trends
I
I.
1.4.1
1.4.2
1.4.3
1.4.4
Anode
Cathode
Cell size
Process control
1.4.5
Energy consumption
1.11.5
Alternative processes
1.11.6
Conclusions
References
103
103
104
104
104
105
105
105
106
106
108
108
108
108
109
110
110
110
111
112
112
2
NEW PROCESSES FOR ELECTROWINMNG
2.
t
Ionic Conduction of Oxygen and Caiciothermic Reduction in Molten CaO-CaC^
R. O. Suzuki, D. Yamada,
S. Osaki> R. E
Deseallar-Arriesgado, and T. Kikuchi
2.1.1
Introduction
113
115
115
Contents ix
2.1.2
EMF
measurements
115
2.1.3
Oxygen-absorbing anode
117
2.1.4
Calciothermic reduction of electrically isolated oxide
119
2.1.5
CaO content in
CaCl2
suitable for NiO reduction
119
Acknowledgments
121
References
121
2.2
Effects of Temperature and Boron Concentration of a Boron-Doped Diamond (BDD)
Electrode on NF3 Current Efficiency, and Stability of BDD Electrode in Molten
NH4F2HF
123
A. Tasaka,
Y
lida,
T. Shiono, M.
Uno,
Y. Nishiki, T. Furuta, M.
Saito,
and M. Inaba
2.2.1
Introduction
123
2.2.2
Experimental
124
2.2.2.1
Electrolytic cell
124
2.2.2.2
Electrolysis of NH4F-2HF melt with saturated concentration of
Ni2 1
ion
124
2.2.3
Results and Discussion
124
2.2.3.1
Electrochemical measurement and surface analysis of BDD electrode
124
2.2.3.2
Electrolysis of
NH^-ZHF
melt under various conditions
128
Acknowl edgments
13
1
References
131
2.3
Nanoparticle Size Control Using a Rotating Disk Anode for Plasma-Induced Cathodic
Discharge Electrolysis
133
M. Tokushige, T. Nishikiori, and
К
Ito
2.3.1
Introduction
133
2.3.2
Experimental
135
2.3.3
Results and discussion
135
2.3.4
Conclusion
140
Acknowledgments
140
References
140
2.4
Cathodic Phenomena in Li Electrolysis in LiCl-KCl Melt
143
T. Takenaka, T. Morishige, andM. Umehara
2.4.1
Introduction
143
2.4.2
Experimental
144
2.4.3
Results and discussion
144
2.4.3.1
Li deposition and metal fog formation
144
2.4.3.2
Gas bubble generation
146
2.4.4
Conclusion
147
Acknowledgments
147
References
48
χ
Contents
3
MODELING AND THERMODYNAMICS
149
3.1
Ionic Conductivity and Molecular Structure of a Molten
xZńBr2-(l-x
)ABr
(A
=
Li, Na, K) System
151
T. Ohkubo, T. Tahara, K. Takahashi, and Y.
¡muíale
3.1.1
Introduction
151
3.1.2
Experimental
152
3.1.2.1
Ionic conductivity
152
3.1.2.2
Molecular dynamics simulation
152
3.1.3
Results and discussion
153
3.1.4
Conclusion
156
References
156
3.2
Molten Salts: from First Principles to Material Properties
159
M.
Salarme,
P. A. Madden, and C. Simon
3.2.1
Introduction
159
3.2.2
Interaction potentials
160
3.2.3
Material properties
160
3.2.4
Conclusion
161
Acknowledgments
162
References
162
3.3
Different Phases of Fluorido-Tantalates
163
M. Boca,
B. Kubíková, E Šimko, M.
Gembický,
J. Moncol, and K. Jomová
3.3.1
Introduction
163
3.3.2
Phase transformations
in K2TaF7
163
3.3.3
Structure
of the K3TaF8 phase
166
3.3.4
Potassium fluorido-oxido-tantalate phases
167
3.3.5
Conclusion
168
Acknowledgments
169
References
169
3.4
Molecular Dynamics Simulation of SiO2 and
SiO2-CaO
Mixtures
171
A. Jacob, A. Gray-Weale, and P. J.
Masset
171
172
173
173
175
177
179
179
179
3.4.1
Introduction
3.4.2
Molecular dynamics method
3.4.3
Results
3.4.3.1
Pure silica
3.4.3.2
Silica-calcia binary system
3.4.4
Discussion
3.4.5
Conclusion
Acknowledgments
References
Contents xi
3.5 Thermodynamic
Investigation
of the
BaFj-LiF-N^
System
181
M
Berkani and
M. Gaune-Escard
3.5.1
Introduction
щ
3.5.2
Binary systems
181
3.5.2.1
NdFj-LiF system
182
3.5.2.2
BaFj-LiF system
183
3.5.2.3
ВаРі-ШРз
system
í
83
3.5.3
Experimental
183
3.5.3.1
Quality of salts used
183
3.5.3.2
Apparatus and experimental technique
183
3.5.3.3
Precision of results
184
3.5.4
Results and discussion
184
3.5.4.1
Series A
184
3.5.4.2
Series
В
187
3.5.5
Conclusion
190
References
190
3.6
The Stable Complex Species in Melts of Alkali Metal Halides: Quantum-Chemical
Approach
193
V. G. Kremenetsky,
0.
V. Kremenetskaya, and S. A. Kuznetsov
3.6.1
Introduction
193
3.6.2
Calculation methods
195
3.6.3
Results and discussion
195
3.6.4
Conclusion
200
Acknowledgments
200
References
201
3.7
Molecular and Ionic Species in Vapor over Molten Ytterbium Bromides
203
M. R
Butman, D.
N.
Sergeev, V. B. Motalov, L. S. Kudin, L.
Rycerz,
and
M.
Gaune-Escard
3.7.1
Introduction
203
3.7.2
Experimental
204
3.7.3
Results and discussion
205
3.7.3.1
Mass spectra and ionization efficiency curves
205
Acknowledgments
210
References
211
3.8
Lithium Hydride Solubility in Molten Chlorides
213
P. J.
Masset
3.8.1
Introduction
213
3.8.2
Experimental
214
3.8.2.1
Materials
214
3.8.2.2
Techniques
214
3.8.3
Results and discussion
214
xii Contents
3.8.4
Conclusions
217
Acknowledgments
218
References
218
4
HIGH-TEMPERATURE EXPERIMENTAL TECHNIQUES
219
4.1
In Situ Experimental Approach of Speciation in Molten Fluorides: A Combination
of NMR, EXAFS, and Molecular Dynamics
221
C. Bessada, O. Pauvert, L. Maksoud, D. Zanghi, V. Sarou-Kanian, M. Gobet,
A. L.
Rollet,
A. Rakhmatullin, M. Salanne, C. Simon, D. Thiaudiere, and
H. Matsuura
4.1.1
Introducti on
221
4.1.2
Experimental
223
4.1.2.1
NMR at high temperature
223
4.1.2.2
EXAFS at high temperature
223
4.1.2.3
Molecular dynamics
224
4.1.3
Results and discussion
224
4.1.4
Conclusion
226
Acknowledgments
227
References
228
4.2
NMR Study of Melts in the System
ШЋкШ6-МгОуА5РОА
229
A. Rakhmatullin, M. Keppert, G. M.
Haarberg, F.
Šimko,
and
С.
Bessada
4.2.1
introduction
229
4.2.2
Results and discussion
230
Acknowledgments
232
References
232
4.3
Structure and Dynamics of Alkali and Alkaline Earth Molten Fluorides by
High-Temperature NMR and Molecular Dynamics
235
G. Moussaed, V. Sarou-Kanian, M. Gobet, M. Salanne, C. Simon, A.-L
Rollet
and C. Bessada
4.3.1
Introduction
4.3.2
Experimental 236
4.3.2.1
High-temperature NMR 236
4.3.2.2
Molecular dynamics
236
4.3.3
Results and discussion 23^
4.3.3.1
Structure of the melts 236
4.3.3.2
Dynamics of the melts 238
4.3.4
Conclusion 240
Acknowledgments
References
Contents xiii
4.4 Speciation
of
Niobium in Chloride
Melts: An
Electronic Absorption
Spectroscopic Study
243
I.
В.
Polovov, N.
P.
Brevnova, V. A. Volkovich,
M.
V.
Chemyshov, B. D. Vasin,
and O. I. Rebrin
4.4.
J
Introduction
243
4.4.2
Experimental
244
4.4.3
Results and discussion
245
4.4.3.1
Dissolution of Niobium Pentachloride in Chloride Melts
245
4.4.3.2
Anodic dissolution of niobium metal in chloride melts
246
4.4.3.3
Chlorination of niobium oxides in chloride melts
247
4.4.3.4
Exchange reactions between niobium metal and ion-oxidixers
250
4.4.3.5
Spectroelectrochemistry studies in niobium-containing chloride melts
252
4.4.4
Conclusions
253
References
255
4.5
Electrode Processes in Vanadium-Containing Chloride Melts
257
I. B. Polovov, M. E. Tray, M.
V. Chemyshov, V. A. Volkovich, B. D.
Vasin,
and
O. L
Rebrin
4.5.1
Introduction
257
4.5.2
Experimental
257
4.5.3
Results and discussion
258
4.5.3.1
Anodic dissolution of vanadium metal in NaCl-KCl melts
258
4.5.3.2
Anodic dissolution of vanadium metal in NaCl-KCl-VCb melts
264
4.5.3.3
Cathodic reduction of vanadium in
NaCÍ-KCI-VCÍ,
melts
266
4.5.3.4
Cathodic reduction of vanadium in NaCl-KCl-VCb melts
270
4.5.4
Conclusions
279
References
280
4.6
Electrodeposition of Lead from Chloride Melts
283
G.
M.
Haarberg,
L.-E. Owe,
B. Qin, J.
Wang, and
R. Tunold
4.6.1
Introduction
283
4.6.2
Experimental
284
4.6.3
Results and discussion
284
4.6.4
Conclusions
286
References
286
4.7
Electrodeposition of
Ti
from K2TiF6 in NaCI-KCI-NaF Melts
287
C.A.C.
Sequeira
4.7.1
Introduction
287
4.7.2
Experimentai
288
4.7.2.1
Reagents
288
4.7.2.2
Apparatus
288
4.7.2.3
Electrodes
289
4.7.2.4
Procedure
289
xiv Contents
4.7.3
Results and discussion
290
4.7.3.1
Mechanistic studies
290
4.7.3.2
Electrocoating studies
292
4.7.4
Conclusions
293
References
294
4.8
Effect of Electrolysis Parameters on the Coating Composition and Properties during
Electrodeposition of Tungsten Carbides and Zirconium Diborides
295
V. Malyshev, D. Shakhnin, A. Gab, M. Gaune-Escard and
LM.
Astrelin
4.8.1
Introduction
295
4.8.2
Experimental
296
4.8.3
Results and discussion
296
4.8.3.1
Effect of electrolysis parameters on the coating composition and properties
296
4.8.3.2
Physicochemical and operational properties of coatings
299
4.8.4
Conclusions
300
References
301
4.9
Galvanic Coatings of Molybdenum and Tungsten Carbides from Oxide Melts:
Electrodeposition and Initial Stages of Nucleation
303
V Malyshev,
D. Shákhnin,
A. Gab, M. Gaune-Escard and I. M. Astrelin
4.9.1
Introduction
303
4.9.2
Experimental
304
4.9.3
Results and discussion
304
4.9.3.1
Electrodeposition of tungsten and molybdenum coatings from oxide melts
304
4.9.3.2
Effect of electrolysis conditions and parameters on composition and
structure of coatings
305
4.9.3.3
Effect of concentrations of tungstate and acceptors of oxygen ions
305
4.9.3.4
Control of coating structure using reverse deposition mode
307
4.9.3.5
Electrodeposition of carbide-molybdenum and carbide-tungsten
coatings from oxide melts
308
4.9.3.6
Initial stages of nucleation
310
4.9.4
Conclusions
316
References
316
4.10
Electrolytic Production of Matrix Coated Fibres for Titanium Matrix Composites
319
J. G. Gussone and J. M.
Hausmann
4.10.1
Introduction
319
4.10.2
Experimental
320
4.10.3
Results
321
4.10.4
Conclusions
327
References
327
4.11
Electrochemical Synthesis of Double Molybdenum Carbides
329
VS. Dolmatov,
S.A.
Kuznetsov,
E.V.
Rebrov, andJ.C.
Schouten
4.11.1
Introduction
329
Contents xv
4M.2
Experimental
33О
4.11.2.1
Two-stage electrochemical synthesis of double carbides
330
4.11.2.2
Catalytic activity of double molybdenum and nickel carbides and
nickel-promoter molybdenum carbides
330
4.11.3
Results and discussion
331
4.11.3.1
Two-stage electrochemical synthesis of double carbides
331
4.11.3.2
Catalytic activity of double molybdenum and nickel carbides and
nickel-promoter molybdenum carbides
334
4.11.4
Conclusions
336
Acknowledgments
337
References
337
5
ELECTROCHEMISTRY IN IONIC LIQUIDS
339
5.1
Electrodeposition of Aluminium from Ionic Liquids
341
0.
Babushkina, E. Lomako, J.
Wehr,
and
0. Rohr
5.1.1
Introduction
341
5.1.2
Experimental
342
5.
1
.2.1
Drying of ionic liquids
342
5.1.2.2
Electrodeposition in the glove box
342
5.1.2.3
SEM/EDAX analysis
343
5.1.2.4
Focussed ion beam microscope
343
5.1.2.5
Cross-section investigation
343
5.
1
.3
Results and discussion
343
5.1.3.1
Electrodeposition of
Al
from ionic liquid A102 on stainless
steel substrate
343
5.1.3.2
Electrodeposition of
Al
from ionic liquid AI03 on
SS
346
5.1.4
Conclusions
346
Acknowledgments
348
References
348
5.2
Electrolytic Synthesis of (CF3)3N from a Room Temperature Molten Salt of
(CH3)3N »iHF with BDD Electrode
351
A. Tasaka,
К.
Ikeda,
N.
Osawa, M.
Saito,
M.
Uno,
Y.
Nishki,
T. Furuta, and M. Inaba
5.2.1
Introduction
351
5.2.2
Experimental
352
5.2.3
Results and
discussion
353
5.2.3.1
Galvanostatie
polarization curve
353
5.2.3.2
Raman spectrum
353
5.2.3.3
XRD analysis
354
5.2.3.4 SEM
observation
354
5.2.3.5
Electrolysis of the
(CH3
)3N-wHF melt and the mixed melt of (CHj )3N-5.0HF
andCsF^JHF
355
5.2.4
Conclusion
358
Acknowledgments
358
References
358
xv/ Contents
5.3 Electrodeposition
of Reactive
Elements
from Ionic Liquids
359
A. Bund,
A. Ispas,
and
S. Ivanov
5.3.1
Introduction
359
5.3.2
Experimental
360
5.3.3
Results and discussions
360
Acknowledgments
362
References
362
5.4
Electrodeposition of Magnesium in Ionic
Liquidât
150-200 °С 365
B.
Gao,
T. Nohira, R.
Hagiwara, and Z.
Wang
5.4.1
Introduction
365
5.4.2
Experimental
366
5.4.3
Results and discussion
366
5.4.3.1
In the melts after adding Mg(CF,SO3)2 or MgCl2
366
5.4.3.2
In the melts after adding Mg(TFSI)2
368
5.4.4
Conclusion
371
Acknowledgments
371
References
371
5.5
Room-Temperature Ionic Liquid-Based SEM/EDX Techniques for Biological Specimens
and in situ Electrode Reaction
Obsenation
373
T.
Tsíida,
E. Mochìzukì,
S.
Kìshida,
N.
Němoto,
Y.
Ishigaki, and
S.
Kuwabata
5.5.1
Introduction
373
5.5.2
Experimental
374
5.5.3
Results and discussion
376
5.5.3.
1 Novel
SEM
observation technique for biological specimens
376
5.5.3.2
In situ
SEM
observation of electrode reaction in RTIL
379
5.5.3.3
In situ EDX analysis of electrode reaction in RTIL
381
5.5.4
Conclusion
385
Acknowledgments
385
References
385
6
NUCLEAR ENERGY
389
6.1
New Routes for the Production of Reactor Grade Zirconium
391
ľ.
Xiao, A. van Sandwijk, Y. Yang, and V. Laging
6.1.1
Introduction
391
6.1.2
Compact process route for reactor grade zirconium production
392
6.1.2.1
Reduction process: molten salt electrolysis
393
6.1.2.2
Purification process: Zirconium-Hafnium separation
394
6.
1
.2.3
Electro-refining process: production of pure Zirconium
394
6.
і
.3
Removal of Hf from Zr with molten salt extraction
395
6.1.3.1
Thermodynamic evaluation
395
6.1.3.2
Raw materials
396
6.1.3.3
Preparation of master alloy and salt mixture
396
Contents xvii
6.1.3.4
Experimental
procedures
396
6.1.3.5
Results and discussion
397
6.1.4
Concluding remarks
400
Acknowledgments
400
References
400
6.2
NMR and EXAFS Investigations of Lanthanum Fluoride Solubility in Molten
LiF-ZrF^LaF, Mixture: Application in Molten Salts Reactor
4(13
L
Maksoud, M. Gobet, D. Zanghi, H. Matsuura, M. Numakura, O. Pauvert,
and
C. Bessada
6.2.1
Introduction
403
6.2.2
Experimental
404
6.2.2.1
Nuclear magnetic resonance
404
6.2.2.2
Extended X-ray absorption line structure
404
6.2.3
Results and discussion
405
6.2.3.1
Nuclear magnetic resonance
405
6.2.3.2
Extended X-ray absorption line structure
406
6.2.4
Conclusion
406
Acknowledgments
408
References
408
6.3
Actinides Oxidathe Back-Extraction from Liquid Aluminium, in Molten
Chloride Media
411
E.
Mendes,
О.
Conocar,
A. Laplace,
/V. Dotty
ère,
J.
Lacquement, andai. Miguintitchian
6.3.1
Introduction
411
6.3.2
Bibliographic survey and theoretical approach of the oxidative back-extraction
412
6.3.2.1
Bibliographic survey
412
6.3.2.2
Thermodynamic considerations
413
6.3.3
Experimental
413
6.3.4
Results and discussion
415
6.3.4.1
Optimisation of
U
back-extraction
4
1
5
6.3.4.2
Grouped An back-extraction study
417
6.3.5
Summary and conclusion
418
Acknowledgments
418
References
419
6.4
Formation of Uranium Fluoride Complex by Addition of Fluoride Ion to Molten
NaCl-CsCI Melts
421
A. Uehara, O. Shirai, T.
Fujii,
T. Sagai,
N.
Sato, and H.
lamana
6.4.1
introduction
42
í
6.4.2
Experimental
422
6.4.3
Results and discussion
422
6.4.3.1
Absorption specira of U4~ and V- under the e.
isterice
of :~
in NaCl-CsCi eutectic melts containing F~
422
6.4.3.2
Redox
reactions of
U^ilP*
and
ΙΓΊϋ
couples in ihe presence of f~
425
References
426
xviii Contents
6.5
Corrosion
of Austenitic Stainless Steels in Chloride Melts
427
A. V. Abramov, I. B. Potovov, V. A. Volkovich, and
O. I. Rebrín
6.5.1
Introduction
427
6.5.2
Experimental
428
6.5.3
Results and discussion
429
6.5.3.1
Spectroscopie
study of stainless steel corrosion in NaCl-KCl
429
6.5.3.2
Gravimetric investigation of corrosion processes in chloride melts
436
6.5.3.3
Investigation of
intergranular
corrosion by electrochemical methods
441
6.5.4
Conclusions
445
References
446
6.6
Pulsed Neutron Diffraction Study of Molten CsCl-NaCl-YC13
:
Approaches from
Fundamentals to Pyrochemical Reprocessing
449
Y. Iwadate, T. Ohkubo, T. Michii, H. Matsuura, A. Kajinami, K. Takase,
N.
Ohtori,
N.
Umesaki, R. Fujita, K. Mizuguchi, H. Kofuji, M. Myochin, M.
Misawa,
K. Itoh
and T. Fukunaga
6.6.1
Introduction
449
6.6.2
Experimental
450
6.6.3
Results and discussion
450
6.6.3.1
CsCl-NaCl system
450
6.6.3.2
CsCl-NaCl-YCl·, system
454
6.6.4
Conclusions
456
References
457
6.7
Local Structural Analyses of Molten Thorium Fluoride in Mono- and Divalent Cationic
Fluorides
459
M. Numakura,
N.
Sato, C. Bessada, A. Nezu, H. Akatsuka, andH. Matsuura
6.7.1
Introduction
459
6.7.2
Experimental
459
6.7.3
Results and discussion
460
6.7.3.1
Binary mixtures with alkali fluorides
460
6.7.3.2
Ternary mixtures with alkali and alkaline earth fluorides
463
Acknowledgments
466
References
466
6.8
Electrodeposition of Uranium by Pulse Electrolysis in Molten Fluoride Salts
467
M. Straka, F. Lisy,
and
L. Smtmáry
6.8.1
Introduction
467
6.8.2
Experimental
467
6.8.3
Results and discussion
468
6.8.4
Conclusion
473
Acknowledgments
473
References
473
Contents xix
6.9 Quantitative
Analysis of
Lanthanides in
Molten
Chloride
by
Absorption
Spectrophotometry 475
T.
Uda,
T.
Fujii,
K. Fukasawa,
A. Uehara,
Κ.
Kinoshita, T. KoyamaandH. Yamana
6.9.1
Introduction
475
6.9.2
Experimental
475
6.9.3
Results and discussion
476
6.9.3.1
Molar absorptivity of
Ce, Pr, Nd, Sm, Eu,
or
Gd
in the LiCl-KCl
eutectic at
773
К
476
6.9.3.2
Quantitative analysis of rare earth element with simulated concentration
478
6.9.4
Conclusion
480
Acknowledgments
480
References
480
6.10
Formation of Rare Earth Phosphates in NaCl^CsCI-Based Melts
481
V. A. Volkovich, A. B.
Ivanov,
S. M. Yakimov,
I.
В.
Polovov,
B. D.
Vasin,
Α.
V.
Chukin,
Α. Κ
Shtolts and T. R.
Griffiths
6.10.1
Introduction
481
6.10.2
Experimental
482
6.10.3
Results and discussion
482
6.10.3.1
Effect of PO43^:RE mole ratio on precipitation of REE from the melt
483
6.10.3.2
Composition of the rare earth phosphates precipitated
fratti
NaCl-CsCl melts
484
6.10.4
Conclusions
487
References
487
6.11
A Novel Method for Trapping and Studying Volatile Molybdenum(V) in Alkali Chloride
Melts: Implications for Treating Spent Nuclear Fuel
489
V A. Volkovich, I. B, Polovov, R. V Kamalov, B. D. Vasin and T. R. Griffiths
6.11.1
Introduction
489
6.П.2
Experimental
490
6.11.3
Results and discussion
491
6.11.3.1
Dissolution of molybdenumf V
)
chloride in alkali chloride melts
491
6.11.3.2
Evaporation of
molybdenumí V
)
chloride from alkali chloride melts
494
6.11.4
Conclusions
496
References
496
6.12
Electrochemical Measurement of Diffusion Coefficient of
U
in Liquid
Cd 499
Г.
Murakami,
M.
Kuráta,
Y.
Sakamura,
T.
Коуата,
N.
Akìyama,
S. Kitawaki, A.
Nakayoshi,
and
Μ.
Fukushima
6.12.1
Introduction
499
6.12.2
Measurement
500
6.12.3
Experimental
500
6.12.4
Results and discussions
501
xx Contents
6.12.5
Conclusions
504
Acknowledgments
504
References
504
6.13
Reduction of Uranyl(VI) Species in Alkali Chloride Melts
507
V. A. Volkovich, D. E.
Aleksandrov,
D.
S.
Maltsev,
В.
D.
Vasin,
I.
В.
Polovov,
and
T. R.
Griffiths
6.13.1
Introduction
507
6.13.2
Experimental
508
6.13.3
Results and discussion
509
6.13.3.1
Reduction of Uranyl(VI) species in the presence of hydrogen
509
6.13.3.2
Reduction of Uranyl(VI) species by individual metals
511
6.13.3.3
Reduction of Uranyl(VI) species by low oxidation state niobium ions
518
6.13.4
Conclusions
518
References
519
7
ENERGY TECHNOLOGY
521
7.1
Molten Salt Electrochemical Processes Directed Toward a Low Carbon Society
523
Y.Ito
7.1.1
Introduction
523
7.1.2
Electrolytic synthesis of ammonia from water and nitrogen
523
7.1.3
Electrochemical formation of carbon film
524
7.1.4
Low-temperature electrochemical surface nitriding
526
7.1.5
Plasma-induced electrolysis to form nanoparticles
530
7.1.6
Conclusions
531
References
534
7.2
Conductive Property of Molten Carbonate/Ceria-Based Oxide (Ce09Gd01 OL95)
for Hybrid Electrolyte
535
M. Mizuhata, T. Ohashi, and S.
Deki
7.2.1
Introduction
535
7.2.2
Experimental
536
7.2.3
Results and discussion
536
7.2.3.1
Temperature dependence of the electrical conductivity
536
7.2.3.2
Effect of flow gas composition
538
7.2.3.3
Molecular vibration for v, mode of CO,2 ion
540
References
540
7.3
Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power
Applications
543
T. Bauer, D. Laing, andR.
Tamme
7.3.1
Introduction
543
Contents xxi
7.3.2 State
of the art Alkali Nitrate/Nitrite salt mixtures
544
7.3.2.1
KNOg-NaNOj (solar salt system)
544
7.3.2.2
KNOg-NaNCVNaNO;,
(Hitec)
545
7.3.2.3
Ca(NÒ3)2-KNO3-NaNO3 (HitecXL)
545
7.3.3
Literature review of Alkali Nitrate/Nitrite salt mixtures
546
7.3.4
Own measurements on Alkali Nitrate/Nitrite salt mixtures
547
7.3.4.1
Phase diagram measurements
547
7.3.4.2
Thermal stability measurements
548
7.3.5
Summary and conclusions
551
Acknowledgments
551
References
551
7.4
Rechargeable Alkaline Metal Batteries of Amide Salt Electrolytes Melting at Low to
Middle Temperatures
555
R.
Hagìwara,
T.
Nohira,
К.
Numata,
T.
Koketsu,
T.
Yamamoto,
T.
Fujimori,
T.
Ishibashi,
A. Fukunaga, S. Sakai, K. Nitta, and S. Inazawa
7.4.1
Lithium metal battery: Li/(Li,K,Cs)TFSA/LiFePO4
555
7.4.2
Lithium metal battery: Li/(Li,K,Cs)FSA/LiFePO4
556
7.4.3
Sodium metal battery: Na/iNa^siTFSA/NaCrO,
558
7.4.4
Sodium metal battery: Na/CN^^FSA/NaCrOa
561
References
561
7.5
Electrochemistry of Anodic Reaction in Molten Salt Containing LiOH for
Lithium-Hydrogen Energy Cycle
563
Y. Sato, O. Takeda, M. Li, andM. Hoshi
7.5.1
Introduction
563
7.5.2
Experimental
564
7.5.3
Results and discussion
565
7.5.4
Conclusion
567
Acknowledgments
567
References
567
7.6
Electrorefining of Silicon by the Three-Layer Principle in a CaF2-Based Electrolyte
569
E.
Olsen,
S.
Rolseth, and
J.
Thonstad
7.6.1
Introduction and theory
569
7.6.2
Experimental
571
7.6.3
Results and discussion
573
7.6.4
Conclusions
576
Acknowledgments
576
References
576
7.7
Electrochemical Behaviour of Light
Lanthanides in
Molten Chlorides with Fluorides
577
Y. Shimohara, A, Nezu, M. Numakura, H. Akatsuka, andH. Matsuura
7.7.1
Introduction
577
xx/7
Contents
7.7.2
Experimental
577
7.7.3
Results and discussion
578
Acknowledgments
580
References
580
7.8
Using Molten Fluoride Melts for Silicon Electrorefining
581
P. Taxil, L. Massot, A.L. Bieber, M. Gibilaro,
L
Cassayre, and P. Chamelot
7.8.1
Introduction
581
7.8.2
Experimental part
582
7.8.2.1
Cell
582
7.8.2.2
Electrolyte
582
7.8.2.3
Electrodes
582
7.8.2.4
Techniques
582
7.8.3
Selection of electrolyte; fluoroacidity of molten fluoride candidates as electrolyte
solvent
582
7.8.3.1
Cyclic voltammetry and square wave voltammetry
583
7.8.4
Electrodeposition of silicon in molten
NaF-KF-K2SiF6
mixtures
586
7.8.4.1
Nucleation
586
7.8.4.2
Silicon electrodeposition
589
7.8.4.3
Separation of silicon-iron by electrorefining process
590
7.8.4.4
Anodic dissolution of Si and Fe
590
7.8.4.5
Electrorefining of Si with an Fe-Si anode
592
7.8.5
Conclusion
593
References
594
Index
597
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV041932954 |
callnumber-first | T - Technology |
callnumber-label | TP230 |
callnumber-raw | TP230 |
callnumber-search | TP230 |
callnumber-sort | TP 3230 |
callnumber-subject | TP - Chemical Technology |
classification_rvk | VE 6350 |
ctrlnum | (OCoLC)882437992 (DE-599)GBV766808742 |
dewey-full | 546.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 546 - Inorganic chemistry |
dewey-raw | 546.34 |
dewey-search | 546.34 |
dewey-sort | 3546.34 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01650nam a2200397 c 4500</leader><controlfield tag="001">BV041932954</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140714 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140625s2014 ad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2013035011</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118448731</subfield><subfield code="c">cloth</subfield><subfield code="9">978-1-118-44873-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)882437992</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV766808742</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP230</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">546.34</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 6350</subfield><subfield code="0">(DE-625)147133:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molten salts chemistry and technology</subfield><subfield code="c">ed. by Marcelle Gaune-Escard ; Geir Martin Haarberg</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXX, 600 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index. - Literaturangaben</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Applications include energy conversion (solar cells and fuel cells), heat storage, green solvents, metallurgy, nuclear industry, pharmaceutics and biotechnology"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Salzschmelze</subfield><subfield code="0">(DE-588)4051454-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Salzschmelze</subfield><subfield code="0">(DE-588)4051454-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gaune-Escard, Marcelle</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-118-44882-3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027376200&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027376200</subfield></datafield></record></collection> |
id | DE-604.BV041932954 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:08:39Z |
institution | BVB |
isbn | 9781118448731 |
language | English |
lccn | 2013035011 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027376200 |
oclc_num | 882437992 |
open_access_boolean | |
owner | DE-29T DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-29T DE-355 DE-BY-UBR DE-11 |
physical | XXX, 600 S. Ill., graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Wiley |
record_format | marc |
spelling | Molten salts chemistry and technology ed. by Marcelle Gaune-Escard ; Geir Martin Haarberg 1. publ. Chichester Wiley 2014 XXX, 600 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes index. - Literaturangaben "Applications include energy conversion (solar cells and fuel cells), heat storage, green solvents, metallurgy, nuclear industry, pharmaceutics and biotechnology"-- Salzschmelze (DE-588)4051454-7 gnd rswk-swf Salzschmelze (DE-588)4051454-7 s DE-604 Gaune-Escard, Marcelle Sonstige oth Erscheint auch als Online-Ausgabe 978-1-118-44882-3 Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027376200&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Molten salts chemistry and technology Salzschmelze (DE-588)4051454-7 gnd |
subject_GND | (DE-588)4051454-7 |
title | Molten salts chemistry and technology |
title_auth | Molten salts chemistry and technology |
title_exact_search | Molten salts chemistry and technology |
title_full | Molten salts chemistry and technology ed. by Marcelle Gaune-Escard ; Geir Martin Haarberg |
title_fullStr | Molten salts chemistry and technology ed. by Marcelle Gaune-Escard ; Geir Martin Haarberg |
title_full_unstemmed | Molten salts chemistry and technology ed. by Marcelle Gaune-Escard ; Geir Martin Haarberg |
title_short | Molten salts chemistry and technology |
title_sort | molten salts chemistry and technology |
topic | Salzschmelze (DE-588)4051454-7 gnd |
topic_facet | Salzschmelze |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027376200&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gauneescardmarcelle moltensaltschemistryandtechnology |