Knowledge-Based Neurocomputing: A Fuzzy Logic Approach:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2009
|
Schriftenreihe: | Studies in Fuzziness and Soft Computing
234 |
Schlagworte: | |
Online-Zugang: | BTU01 FHN01 FHR01 Volltext |
Beschreibung: | In this monograph, the authors introduce a novel fuzzy rule-base, referred to as the Fuzzy All-permutations Rule-Base (FARB). They show that inferring the FARB, using standard tools from fuzzy logic theory, yields an input-output map that is mathematically equivalent to that of an artificial neural network. Conversely, every standard artificial neural network has an equivalent FARB. The FARB-ANN equivalence integrates the merits of symbolic fuzzy rule-bases and sub-symbolic artificial neural networks, and yields a new approach for knowledge-based neurocomputing in artificial neural networks |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783540880776 |
DOI: | 10.1007/978-3-540-88077-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV041889666 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 140603s2009 |||| o||u| ||||||eng d | ||
020 | |a 9783540880776 |c Online |9 978-3-540-88077-6 | ||
024 | 7 | |a 10.1007/978-3-540-88077-6 |2 doi | |
035 | |a (OCoLC)845460014 | ||
035 | |a (DE-599)BVBBV041889666 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-898 |a DE-92 |a DE-83 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
100 | 1 | |a Kolman, Eyal |e Verfasser |4 aut | |
245 | 1 | 0 | |a Knowledge-Based Neurocomputing: A Fuzzy Logic Approach |c by Eyal Kolman, Michael Margaliot |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2009 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in Fuzziness and Soft Computing |v 234 | |
500 | |a In this monograph, the authors introduce a novel fuzzy rule-base, referred to as the Fuzzy All-permutations Rule-Base (FARB). They show that inferring the FARB, using standard tools from fuzzy logic theory, yields an input-output map that is mathematically equivalent to that of an artificial neural network. Conversely, every standard artificial neural network has an equivalent FARB. The FARB-ANN equivalence integrates the merits of symbolic fuzzy rule-bases and sub-symbolic artificial neural networks, and yields a new approach for knowledge-based neurocomputing in artificial neural networks | ||
505 | 0 | |a The FARB -- The FARB–ANN Equivalence -- Rule Simplification -- Knowledge Extraction Using the FARB -- Knowledge-Based Design of ANNs -- Conclusions and Future Research | |
650 | 4 | |a Engineering | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 0 | 7 | |a Wissensrepräsentation |0 (DE-588)4049534-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fuzzy-Regelsystem |0 (DE-588)4728095-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissensextraktion |0 (DE-588)4546354-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 1 | |a Fuzzy-Regelsystem |0 (DE-588)4728095-5 |D s |
689 | 0 | 2 | |a Wissensextraktion |0 (DE-588)4546354-2 |D s |
689 | 0 | 3 | |a Wissensrepräsentation |0 (DE-588)4049534-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Margaliot, Michael |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-540-88076-9 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-88077-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-ENG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027333620 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-540-88077-6 |l BTU01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-540-88077-6 |l FHN01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-540-88077-6 |l FHR01 |p ZDB-2-ENG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152238785953792 |
---|---|
any_adam_object | |
author | Kolman, Eyal |
author_facet | Kolman, Eyal |
author_role | aut |
author_sort | Kolman, Eyal |
author_variant | e k ek |
building | Verbundindex |
bvnumber | BV041889666 |
classification_rvk | ST 301 |
collection | ZDB-2-ENG |
contents | The FARB -- The FARB–ANN Equivalence -- Rule Simplification -- Knowledge Extraction Using the FARB -- Knowledge-Based Design of ANNs -- Conclusions and Future Research |
ctrlnum | (OCoLC)845460014 (DE-599)BVBBV041889666 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-3-540-88077-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03215nmm a2200613zcb4500</leader><controlfield tag="001">BV041889666</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">140603s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540880776</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-88077-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-540-88077-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845460014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041889666</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolman, Eyal</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Knowledge-Based Neurocomputing: A Fuzzy Logic Approach</subfield><subfield code="c">by Eyal Kolman, Michael Margaliot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in Fuzziness and Soft Computing</subfield><subfield code="v">234</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this monograph, the authors introduce a novel fuzzy rule-base, referred to as the Fuzzy All-permutations Rule-Base (FARB). They show that inferring the FARB, using standard tools from fuzzy logic theory, yields an input-output map that is mathematically equivalent to that of an artificial neural network. Conversely, every standard artificial neural network has an equivalent FARB. The FARB-ANN equivalence integrates the merits of symbolic fuzzy rule-bases and sub-symbolic artificial neural networks, and yields a new approach for knowledge-based neurocomputing in artificial neural networks</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">The FARB -- The FARB–ANN Equivalence -- Rule Simplification -- Knowledge Extraction Using the FARB -- Knowledge-Based Design of ANNs -- Conclusions and Future Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissensrepräsentation</subfield><subfield code="0">(DE-588)4049534-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fuzzy-Regelsystem</subfield><subfield code="0">(DE-588)4728095-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissensextraktion</subfield><subfield code="0">(DE-588)4546354-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fuzzy-Regelsystem</subfield><subfield code="0">(DE-588)4728095-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wissensextraktion</subfield><subfield code="0">(DE-588)4546354-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Wissensrepräsentation</subfield><subfield code="0">(DE-588)4049534-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Margaliot, Michael</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-540-88076-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-88077-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027333620</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-88077-6</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-88077-6</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-88077-6</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV041889666 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:07:32Z |
institution | BVB |
isbn | 9783540880776 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027333620 |
oclc_num | 845460014 |
open_access_boolean | |
owner | DE-634 DE-898 DE-BY-UBR DE-92 DE-83 |
owner_facet | DE-634 DE-898 DE-BY-UBR DE-92 DE-83 |
physical | 1 Online-Ressource |
psigel | ZDB-2-ENG |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Studies in Fuzziness and Soft Computing |
spelling | Kolman, Eyal Verfasser aut Knowledge-Based Neurocomputing: A Fuzzy Logic Approach by Eyal Kolman, Michael Margaliot Berlin, Heidelberg Springer Berlin Heidelberg 2009 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Studies in Fuzziness and Soft Computing 234 In this monograph, the authors introduce a novel fuzzy rule-base, referred to as the Fuzzy All-permutations Rule-Base (FARB). They show that inferring the FARB, using standard tools from fuzzy logic theory, yields an input-output map that is mathematically equivalent to that of an artificial neural network. Conversely, every standard artificial neural network has an equivalent FARB. The FARB-ANN equivalence integrates the merits of symbolic fuzzy rule-bases and sub-symbolic artificial neural networks, and yields a new approach for knowledge-based neurocomputing in artificial neural networks The FARB -- The FARB–ANN Equivalence -- Rule Simplification -- Knowledge Extraction Using the FARB -- Knowledge-Based Design of ANNs -- Conclusions and Future Research Engineering Artificial intelligence Engineering mathematics Appl.Mathematics/Computational Methods of Engineering Artificial Intelligence (incl. Robotics) Ingenieurwissenschaften Künstliche Intelligenz Wissensrepräsentation (DE-588)4049534-6 gnd rswk-swf Fuzzy-Regelsystem (DE-588)4728095-5 gnd rswk-swf Wissensextraktion (DE-588)4546354-2 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 s Fuzzy-Regelsystem (DE-588)4728095-5 s Wissensextraktion (DE-588)4546354-2 s Wissensrepräsentation (DE-588)4049534-6 s 1\p DE-604 Margaliot, Michael Sonstige oth Erscheint auch als Druckausgabe 978-3-540-88076-9 https://doi.org/10.1007/978-3-540-88077-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kolman, Eyal Knowledge-Based Neurocomputing: A Fuzzy Logic Approach The FARB -- The FARB–ANN Equivalence -- Rule Simplification -- Knowledge Extraction Using the FARB -- Knowledge-Based Design of ANNs -- Conclusions and Future Research Engineering Artificial intelligence Engineering mathematics Appl.Mathematics/Computational Methods of Engineering Artificial Intelligence (incl. Robotics) Ingenieurwissenschaften Künstliche Intelligenz Wissensrepräsentation (DE-588)4049534-6 gnd Fuzzy-Regelsystem (DE-588)4728095-5 gnd Wissensextraktion (DE-588)4546354-2 gnd Neuronales Netz (DE-588)4226127-2 gnd |
subject_GND | (DE-588)4049534-6 (DE-588)4728095-5 (DE-588)4546354-2 (DE-588)4226127-2 |
title | Knowledge-Based Neurocomputing: A Fuzzy Logic Approach |
title_auth | Knowledge-Based Neurocomputing: A Fuzzy Logic Approach |
title_exact_search | Knowledge-Based Neurocomputing: A Fuzzy Logic Approach |
title_full | Knowledge-Based Neurocomputing: A Fuzzy Logic Approach by Eyal Kolman, Michael Margaliot |
title_fullStr | Knowledge-Based Neurocomputing: A Fuzzy Logic Approach by Eyal Kolman, Michael Margaliot |
title_full_unstemmed | Knowledge-Based Neurocomputing: A Fuzzy Logic Approach by Eyal Kolman, Michael Margaliot |
title_short | Knowledge-Based Neurocomputing: A Fuzzy Logic Approach |
title_sort | knowledge based neurocomputing a fuzzy logic approach |
topic | Engineering Artificial intelligence Engineering mathematics Appl.Mathematics/Computational Methods of Engineering Artificial Intelligence (incl. Robotics) Ingenieurwissenschaften Künstliche Intelligenz Wissensrepräsentation (DE-588)4049534-6 gnd Fuzzy-Regelsystem (DE-588)4728095-5 gnd Wissensextraktion (DE-588)4546354-2 gnd Neuronales Netz (DE-588)4226127-2 gnd |
topic_facet | Engineering Artificial intelligence Engineering mathematics Appl.Mathematics/Computational Methods of Engineering Artificial Intelligence (incl. Robotics) Ingenieurwissenschaften Künstliche Intelligenz Wissensrepräsentation Fuzzy-Regelsystem Wissensextraktion Neuronales Netz |
url | https://doi.org/10.1007/978-3-540-88077-6 |
work_keys_str_mv | AT kolmaneyal knowledgebasedneurocomputingafuzzylogicapproach AT margaliotmichael knowledgebasedneurocomputingafuzzylogicapproach |