The geometrization conjecture:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, RI
American Math. Soc.
2014
|
Schriftenreihe: | Clay mathematics monographs
5 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 281 - 282 |
Beschreibung: | IX, 291 S. graph. Darst. |
ISBN: | 9780821852019 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV041887436 | ||
003 | DE-604 | ||
005 | 20150508 | ||
007 | t | ||
008 | 140602s2014 xxud||| |||| 00||| eng d | ||
010 | |a 013045837 | ||
020 | |a 9780821852019 |9 978-0-8218-5201-9 | ||
035 | |a (OCoLC)882938162 | ||
035 | |a (DE-599)BVBBV041887436 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-20 |a DE-188 |a DE-703 |a DE-384 |a DE-355 |a DE-83 | ||
050 | 0 | |a QA671 | |
082 | 0 | |a 516.3/62 |2 23 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a 53C21 |2 msc | ||
100 | 1 | |a Morgan, John W. |d 1946- |e Verfasser |0 (DE-588)129352446 |4 aut | |
245 | 1 | 0 | |a The geometrization conjecture |c John Morgan ; Gang Tian |
264 | 1 | |a Providence, RI |b American Math. Soc. |c 2014 | |
300 | |a IX, 291 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Clay mathematics monographs |v 5 | |
500 | |a Literaturverz. S. 281 - 282 | ||
650 | 7 | |a Differential geometry ... Global differential geometry ... Methods of Riemannian geometry, including PDE methods; curvature restrictions |2 msc | |
650 | 7 | |a Differential geometry ... Global differential geometry ... Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces |2 msc | |
650 | 7 | |a Differential geometry ... Global differential geometry ... Homogeneous manifolds |2 msc | |
650 | 7 | |a Differential geometry ... Global differential geometry ... Geometric evolution equations (mean curvature flow, Ricci flow, etc.) |2 msc | |
650 | 7 | |a Differential geometry ... Global differential geometry ... Global surface theory (convex surfaces à la A. D. Aleksandrov) |2 msc | |
650 | 7 | |a Manifolds and cell complexes ... Low-dimensional topology ... Characterizations of $E 3$ and $S 3$ (Poincaré conjecture) |2 msc | |
650 | 7 | |a Manifolds and cell complexes ... Low-dimensional topology ... Group actions in low dimensions |2 msc | |
650 | 4 | |a Global Riemannian geometry | |
650 | 4 | |a Topological manifolds | |
650 | 4 | |a Differential geometry ... Global differential geometry ... Methods of Riemannian geometry, including PDE methods; curvature restrictions | |
650 | 4 | |a Differential geometry ... Global differential geometry ... Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces | |
650 | 4 | |a Differential geometry ... Global differential geometry ... Homogeneous manifolds | |
650 | 4 | |a Differential geometry ... Global differential geometry ... Geometric evolution equations (mean curvature flow, Ricci flow, etc.) | |
650 | 4 | |a Differential geometry ... Global differential geometry ... Global surface theory (convex surfaces à la A. D. Aleksandrov) | |
650 | 4 | |a Manifolds and cell complexes ... Low-dimensional topology ... Characterizations of $E 3$ and $S 3$ (Poincaré conjecture) | |
650 | 4 | |a Manifolds and cell complexes ... Low-dimensional topology ... Group actions in low dimensions | |
650 | 0 | 7 | |a Globale Riemannsche Geometrie |0 (DE-588)4157622-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ricci-Fluss |0 (DE-588)7531847-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ricci-Fluss |0 (DE-588)7531847-7 |D s |
689 | 0 | 1 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |D s |
689 | 0 | 2 | |a Globale Riemannsche Geometrie |0 (DE-588)4157622-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gang, Tian |d 1958- |e Verfasser |0 (DE-588)11804768X |4 aut | |
830 | 0 | |a Clay mathematics monographs |v 5 |w (DE-604)BV017693220 |9 5 | |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027331426&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027331426 |
Datensatz im Suchindex
_version_ | 1804152235264835584 |
---|---|
adam_text | THE GEOMETRIZATION CONJECTURE
/ MORGAN, JOHN [AUTHOR.] 1946 MARCH 21-
: 2014
TABLE OF CONTENTS / INHALTSVERZEICHNIS
INTRODUCTION
RICCI FLOW WITH SURGERY
LIMITS AS [T GOES TO INFINITY]
LOCAL RESULTS VALID FOR LARGE TIME
PROOFS OF THE THREE PROPOSITIONS
INTRODUCTION TO PART II
THE COLLAPSING THEOREM
OVERVIEW OF THE REST OF THE ARGUMENT
BASICS OF GROMOV-HAUSDORFF CONVERGENCE
BASICS OF ALEXANDROV SPACES
2-DIMENSIONAL ALEXANDROV SPACES
3-DIMENSIONAL ANALOGUES
THE GLOBAL RESULT
THE EQUIVARIANT CASE
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Morgan, John W. 1946- Gang, Tian 1958- |
author_GND | (DE-588)129352446 (DE-588)11804768X |
author_facet | Morgan, John W. 1946- Gang, Tian 1958- |
author_role | aut aut |
author_sort | Morgan, John W. 1946- |
author_variant | j w m jw jwm t g tg |
building | Verbundindex |
bvnumber | BV041887436 |
callnumber-first | Q - Science |
callnumber-label | QA671 |
callnumber-raw | QA671 |
callnumber-search | QA671 |
callnumber-sort | QA 3671 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 SK 370 |
ctrlnum | (OCoLC)882938162 (DE-599)BVBBV041887436 |
dewey-full | 516.3/62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/62 |
dewey-search | 516.3/62 |
dewey-sort | 3516.3 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03968nam a2200673 cb4500</leader><controlfield tag="001">BV041887436</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150508 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140602s2014 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">013045837</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821852019</subfield><subfield code="9">978-0-8218-5201-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)882938162</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041887436</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA671</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53C21</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morgan, John W.</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)129352446</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The geometrization conjecture</subfield><subfield code="c">John Morgan ; Gang Tian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Math. Soc.</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 291 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Clay mathematics monographs</subfield><subfield code="v">5</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 281 - 282</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential geometry ... Global differential geometry ... Methods of Riemannian geometry, including PDE methods; curvature restrictions</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential geometry ... Global differential geometry ... Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential geometry ... Global differential geometry ... Homogeneous manifolds</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential geometry ... Global differential geometry ... Geometric evolution equations (mean curvature flow, Ricci flow, etc.)</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential geometry ... Global differential geometry ... Global surface theory (convex surfaces à la A. D. Aleksandrov)</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds and cell complexes ... Low-dimensional topology ... Characterizations of $E 3$ and $S 3$ (Poincaré conjecture)</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds and cell complexes ... Low-dimensional topology ... Group actions in low dimensions</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Riemannian geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry ... Global differential geometry ... Methods of Riemannian geometry, including PDE methods; curvature restrictions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry ... Global differential geometry ... Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry ... Global differential geometry ... Homogeneous manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry ... Global differential geometry ... Geometric evolution equations (mean curvature flow, Ricci flow, etc.)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry ... Global differential geometry ... Global surface theory (convex surfaces à la A. D. Aleksandrov)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and cell complexes ... Low-dimensional topology ... Characterizations of $E 3$ and $S 3$ (Poincaré conjecture)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and cell complexes ... Low-dimensional topology ... Group actions in low dimensions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4157622-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ricci-Fluss</subfield><subfield code="0">(DE-588)7531847-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ricci-Fluss</subfield><subfield code="0">(DE-588)7531847-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Globale Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4157622-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gang, Tian</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11804768X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Clay mathematics monographs</subfield><subfield code="v">5</subfield><subfield code="w">(DE-604)BV017693220</subfield><subfield code="9">5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027331426&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027331426</subfield></datafield></record></collection> |
id | DE-604.BV041887436 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:07:29Z |
institution | BVB |
isbn | 9780821852019 |
language | English |
lccn | 013045837 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027331426 |
oclc_num | 882938162 |
open_access_boolean | |
owner | DE-20 DE-188 DE-703 DE-384 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-20 DE-188 DE-703 DE-384 DE-355 DE-BY-UBR DE-83 |
physical | IX, 291 S. graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | American Math. Soc. |
record_format | marc |
series | Clay mathematics monographs |
series2 | Clay mathematics monographs |
spelling | Morgan, John W. 1946- Verfasser (DE-588)129352446 aut The geometrization conjecture John Morgan ; Gang Tian Providence, RI American Math. Soc. 2014 IX, 291 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Clay mathematics monographs 5 Literaturverz. S. 281 - 282 Differential geometry ... Global differential geometry ... Methods of Riemannian geometry, including PDE methods; curvature restrictions msc Differential geometry ... Global differential geometry ... Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces msc Differential geometry ... Global differential geometry ... Homogeneous manifolds msc Differential geometry ... Global differential geometry ... Geometric evolution equations (mean curvature flow, Ricci flow, etc.) msc Differential geometry ... Global differential geometry ... Global surface theory (convex surfaces à la A. D. Aleksandrov) msc Manifolds and cell complexes ... Low-dimensional topology ... Characterizations of $E 3$ and $S 3$ (Poincaré conjecture) msc Manifolds and cell complexes ... Low-dimensional topology ... Group actions in low dimensions msc Global Riemannian geometry Topological manifolds Differential geometry ... Global differential geometry ... Methods of Riemannian geometry, including PDE methods; curvature restrictions Differential geometry ... Global differential geometry ... Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces Differential geometry ... Global differential geometry ... Homogeneous manifolds Differential geometry ... Global differential geometry ... Geometric evolution equations (mean curvature flow, Ricci flow, etc.) Differential geometry ... Global differential geometry ... Global surface theory (convex surfaces à la A. D. Aleksandrov) Manifolds and cell complexes ... Low-dimensional topology ... Characterizations of $E 3$ and $S 3$ (Poincaré conjecture) Manifolds and cell complexes ... Low-dimensional topology ... Group actions in low dimensions Globale Riemannsche Geometrie (DE-588)4157622-6 gnd rswk-swf Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd rswk-swf Ricci-Fluss (DE-588)7531847-7 gnd rswk-swf Ricci-Fluss (DE-588)7531847-7 s Topologische Mannigfaltigkeit (DE-588)4185712-4 s Globale Riemannsche Geometrie (DE-588)4157622-6 s DE-604 Gang, Tian 1958- Verfasser (DE-588)11804768X aut Clay mathematics monographs 5 (DE-604)BV017693220 5 LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027331426&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Morgan, John W. 1946- Gang, Tian 1958- The geometrization conjecture Clay mathematics monographs Differential geometry ... Global differential geometry ... Methods of Riemannian geometry, including PDE methods; curvature restrictions msc Differential geometry ... Global differential geometry ... Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces msc Differential geometry ... Global differential geometry ... Homogeneous manifolds msc Differential geometry ... Global differential geometry ... Geometric evolution equations (mean curvature flow, Ricci flow, etc.) msc Differential geometry ... Global differential geometry ... Global surface theory (convex surfaces à la A. D. Aleksandrov) msc Manifolds and cell complexes ... Low-dimensional topology ... Characterizations of $E 3$ and $S 3$ (Poincaré conjecture) msc Manifolds and cell complexes ... Low-dimensional topology ... Group actions in low dimensions msc Global Riemannian geometry Topological manifolds Differential geometry ... Global differential geometry ... Methods of Riemannian geometry, including PDE methods; curvature restrictions Differential geometry ... Global differential geometry ... Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces Differential geometry ... Global differential geometry ... Homogeneous manifolds Differential geometry ... Global differential geometry ... Geometric evolution equations (mean curvature flow, Ricci flow, etc.) Differential geometry ... Global differential geometry ... Global surface theory (convex surfaces à la A. D. Aleksandrov) Manifolds and cell complexes ... Low-dimensional topology ... Characterizations of $E 3$ and $S 3$ (Poincaré conjecture) Manifolds and cell complexes ... Low-dimensional topology ... Group actions in low dimensions Globale Riemannsche Geometrie (DE-588)4157622-6 gnd Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd Ricci-Fluss (DE-588)7531847-7 gnd |
subject_GND | (DE-588)4157622-6 (DE-588)4185712-4 (DE-588)7531847-7 |
title | The geometrization conjecture |
title_auth | The geometrization conjecture |
title_exact_search | The geometrization conjecture |
title_full | The geometrization conjecture John Morgan ; Gang Tian |
title_fullStr | The geometrization conjecture John Morgan ; Gang Tian |
title_full_unstemmed | The geometrization conjecture John Morgan ; Gang Tian |
title_short | The geometrization conjecture |
title_sort | the geometrization conjecture |
topic | Differential geometry ... Global differential geometry ... Methods of Riemannian geometry, including PDE methods; curvature restrictions msc Differential geometry ... Global differential geometry ... Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces msc Differential geometry ... Global differential geometry ... Homogeneous manifolds msc Differential geometry ... Global differential geometry ... Geometric evolution equations (mean curvature flow, Ricci flow, etc.) msc Differential geometry ... Global differential geometry ... Global surface theory (convex surfaces à la A. D. Aleksandrov) msc Manifolds and cell complexes ... Low-dimensional topology ... Characterizations of $E 3$ and $S 3$ (Poincaré conjecture) msc Manifolds and cell complexes ... Low-dimensional topology ... Group actions in low dimensions msc Global Riemannian geometry Topological manifolds Differential geometry ... Global differential geometry ... Methods of Riemannian geometry, including PDE methods; curvature restrictions Differential geometry ... Global differential geometry ... Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces Differential geometry ... Global differential geometry ... Homogeneous manifolds Differential geometry ... Global differential geometry ... Geometric evolution equations (mean curvature flow, Ricci flow, etc.) Differential geometry ... Global differential geometry ... Global surface theory (convex surfaces à la A. D. Aleksandrov) Manifolds and cell complexes ... Low-dimensional topology ... Characterizations of $E 3$ and $S 3$ (Poincaré conjecture) Manifolds and cell complexes ... Low-dimensional topology ... Group actions in low dimensions Globale Riemannsche Geometrie (DE-588)4157622-6 gnd Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd Ricci-Fluss (DE-588)7531847-7 gnd |
topic_facet | Differential geometry ... Global differential geometry ... Methods of Riemannian geometry, including PDE methods; curvature restrictions Differential geometry ... Global differential geometry ... Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces Differential geometry ... Global differential geometry ... Homogeneous manifolds Differential geometry ... Global differential geometry ... Geometric evolution equations (mean curvature flow, Ricci flow, etc.) Differential geometry ... Global differential geometry ... Global surface theory (convex surfaces à la A. D. Aleksandrov) Manifolds and cell complexes ... Low-dimensional topology ... Characterizations of $E 3$ and $S 3$ (Poincaré conjecture) Manifolds and cell complexes ... Low-dimensional topology ... Group actions in low dimensions Global Riemannian geometry Topological manifolds Globale Riemannsche Geometrie Topologische Mannigfaltigkeit Ricci-Fluss |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027331426&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV017693220 |
work_keys_str_mv | AT morganjohnw thegeometrizationconjecture AT gangtian thegeometrizationconjecture |