One-dimensional superconductivity in nanowires:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2013
|
Schlagworte: | |
Online-Zugang: | FRO01 UBT01 Volltext |
Beschreibung: | 4.3 Khlebnikov Theory of Interacting Phase Slips in Short Wires: Quark Confinement Physics Devoted to the topic of superconductivity in very narrow metallic wires, the goal of this book is to produce a relatively self-contained introduction to the theoretical, experimental and phenomenological aspects of the 1-dimensional superconducting nanowire system |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783527649044 9783527649051 9783527649068 9783527649075 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV041829447 | ||
003 | DE-604 | ||
005 | 20140523 | ||
007 | cr|uuu---uuuuu | ||
008 | 140506s2013 |||| o||u| ||||||eng d | ||
020 | |a 9783527649044 |c Online |9 978-3-527-64904-4 | ||
020 | |a 9783527649051 |c mobi |9 978-3-527-64905-1 | ||
020 | |a 9783527649068 |c ePub |9 978-3-527-64906-8 | ||
020 | |a 9783527649075 |c ePDF |9 978-3-527-64907-5 | ||
024 | 7 | |a 10.1002/9783527649044 |2 doi | |
035 | |a (OCoLC)841169553 | ||
035 | |a (DE-599)BVBBV041829447 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-861 | ||
082 | 0 | |a 620.115 | |
084 | |a UP 2200 |0 (DE-625)146356: |2 rvk | ||
084 | |a UP 5050 |0 (DE-625)146409: |2 rvk | ||
084 | |a UQ 8320 |0 (DE-625)146595: |2 rvk | ||
084 | |a ZN 3700 |0 (DE-625)157333: |2 rvk | ||
100 | 1 | |a Altomare, Fabio |e Verfasser |0 (DE-588)1034945092 |4 aut | |
245 | 1 | 0 | |a One-dimensional superconductivity in nanowires |c Fabio Altomare and Albert M. Chang |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2013 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a 4.3 Khlebnikov Theory of Interacting Phase Slips in Short Wires: Quark Confinement Physics | ||
500 | |a Devoted to the topic of superconductivity in very narrow metallic wires, the goal of this book is to produce a relatively self-contained introduction to the theoretical, experimental and phenomenological aspects of the 1-dimensional superconducting nanowire system | ||
505 | 0 | |a OneDimensional Superconductivity in Nanowires; Contents; Preface; Abbreviations and Symbols; Color Plates; Part One Theoretical Aspects of Superconductivity in 1D Nanowires; 1 Superconductivity: Basics and Formulation; 1.1 Introduction; 1.2 BCS Theory; 1.3 Bogoliubov-de Gennes Equations -- Quasiparticle Excitations; 1.4 Ginzburg-Landau Theory; 1.4.1 Time-Dependent Ginzburg-Landau Theory; 1.5 Gorkov Green's Functions, Eilenberger-Larkin-Ovchinnikov Equations, and the Usadel Equation; 1.6 Path Integral Formulation; References; 2 1D Superconductivity: Basic Notions; 2.1 Introduction | |
505 | 0 | |a 2.2 Shape Resonances -- Oscillations in Superconductivity Properties2.2.1 Early Treatments of Shape Resonances in 2D Films; 2.2.2 Bogoliubov-de Gennes Equations, Finite Temperature, and Parabolic-Band Approximation for Realistic Materials; 2.2.3 Numerical Solutions and Thin Film Shape Resonances; 2.2.4 1D Nanowires -- Shape Resonances and Size Oscillations; 2.3 Superconductivity in Carbon Nanotubes -- Single-Walled Bundles and Individual Multiwalled Nanotubes; 2.4 Phase Slips; 2.4.1 Finite Voltage in a Superconducting Wire and Phase Slip; 2.4.2 Phase Slip in a Josephson Junction | |
505 | 0 | |a 2.4.3 Langer-Ambegaokar Free Energy Minima in the Ginzburg-Landau Approximation2.4.4 Transition Rate and Free Energy Barrier; 2.4.5 Free Energy Barrier for a Phase Slip in the Ginzburg-Landau Theory; 2.4.6 Physical Scenario of a Thermally-Activated Phase Slip; 2.4.7 McCumber-Halperin Estimate of the Attempt Frequency; References; 3 Quantum Phase Slips and Quantum Phase Transitions; 3.1 Introduction; 3.2 Zaikin-Golubev Theory; 3.2.1 Derivation of the Low Energy Effective Action; 3.2.2 Core Contribution to the QPS Action; 3.2.3 Hydrodynamic Contribution to the Phase-Slip Action | |
505 | 0 | |a 3.2.4 Quantum Phase-Slip Rate3.2.5 Quantum Phase-Slip Interaction and Quantum-Phase Transitions; 3.2.6 Wire Resistance and Nonlinear Voltage-Current Relations; 3.3 Short-Wire Superconductor-Insulator Transition: Büchler, Geshkenbein and Blatter Theory; 3.4 Refael, Demler, Oreg, Fisher Theory -- 1D Josephson Junction Chains and Nanowires; 3.4.1 Discrete Model of 1D Josephson Junction Chains; 3.4.2 Resistance of the Josephson Junctions and the Nanowire; 3.4.3 Mean Field Theory of the Short-Wire SIT; 3.5 Khlebnikov-Pryadko Theory -- Momentum Conservation | |
505 | 0 | |a 3.5.1 Gross-Pitaevskii Model and Quantum Phase Slips3.5.2 Disorder Averaging, Quantum Phase Transition and Scaling for the Resistance and Current-Voltage Relations; 3.5.3 Short Wires -- Linear QPS Interaction and Exponential QPS Rate; 3.6 Quantum Criticality and Pair-Breaking -- Universal Conductance and Thermal Transport in Short Wires; References; 4 Duality; 4.1 Introduction; 4.2 Mooij-Nazarov Theory of Duality -- QPS Junctions; 4.2.1 QPS Junction Voltage-Charge Relationship and Shapiro Current Steps; 4.2.2 QPS Qubits | |
650 | 4 | |a Low-dimensional semiconductors | |
650 | 4 | |a Nanostructured materials | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Material Science |2 bisacsh | |
650 | 7 | |a Eindimensionaler Leiter |2 gnd | |
650 | 7 | |a Nanodraht |2 gnd | |
650 | 7 | |a Supraleitung |2 gnd | |
650 | 4 | |a Nanowires | |
650 | 4 | |a Superconductivity | |
650 | 0 | 7 | |a Supraleitung |0 (DE-588)4058651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanodraht |0 (DE-588)4707308-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanodraht |0 (DE-588)4707308-1 |D s |
689 | 0 | 1 | |a Supraleitung |0 (DE-588)4058651-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Chang, Albert M. |e Verfasser |0 (DE-588)1034945181 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-527-40995-2 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9783527649044 |x Verlag |3 Volltext |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q FHR_PDA_WIC | |
940 | 1 | |q UBG_PDA_WIC | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027274366 | ||
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9783527649044 |l FRO01 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9783527649044 |l UBT01 |p ZDB-35-WIC |q UBT_Wiley_EK_2014 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152165016535040 |
---|---|
any_adam_object | |
author | Altomare, Fabio Chang, Albert M. |
author_GND | (DE-588)1034945092 (DE-588)1034945181 |
author_facet | Altomare, Fabio Chang, Albert M. |
author_role | aut aut |
author_sort | Altomare, Fabio |
author_variant | f a fa a m c am amc |
building | Verbundindex |
bvnumber | BV041829447 |
classification_rvk | UP 2200 UP 5050 UQ 8320 ZN 3700 |
collection | ZDB-35-WIC |
contents | OneDimensional Superconductivity in Nanowires; Contents; Preface; Abbreviations and Symbols; Color Plates; Part One Theoretical Aspects of Superconductivity in 1D Nanowires; 1 Superconductivity: Basics and Formulation; 1.1 Introduction; 1.2 BCS Theory; 1.3 Bogoliubov-de Gennes Equations -- Quasiparticle Excitations; 1.4 Ginzburg-Landau Theory; 1.4.1 Time-Dependent Ginzburg-Landau Theory; 1.5 Gorkov Green's Functions, Eilenberger-Larkin-Ovchinnikov Equations, and the Usadel Equation; 1.6 Path Integral Formulation; References; 2 1D Superconductivity: Basic Notions; 2.1 Introduction 2.2 Shape Resonances -- Oscillations in Superconductivity Properties2.2.1 Early Treatments of Shape Resonances in 2D Films; 2.2.2 Bogoliubov-de Gennes Equations, Finite Temperature, and Parabolic-Band Approximation for Realistic Materials; 2.2.3 Numerical Solutions and Thin Film Shape Resonances; 2.2.4 1D Nanowires -- Shape Resonances and Size Oscillations; 2.3 Superconductivity in Carbon Nanotubes -- Single-Walled Bundles and Individual Multiwalled Nanotubes; 2.4 Phase Slips; 2.4.1 Finite Voltage in a Superconducting Wire and Phase Slip; 2.4.2 Phase Slip in a Josephson Junction 2.4.3 Langer-Ambegaokar Free Energy Minima in the Ginzburg-Landau Approximation2.4.4 Transition Rate and Free Energy Barrier; 2.4.5 Free Energy Barrier for a Phase Slip in the Ginzburg-Landau Theory; 2.4.6 Physical Scenario of a Thermally-Activated Phase Slip; 2.4.7 McCumber-Halperin Estimate of the Attempt Frequency; References; 3 Quantum Phase Slips and Quantum Phase Transitions; 3.1 Introduction; 3.2 Zaikin-Golubev Theory; 3.2.1 Derivation of the Low Energy Effective Action; 3.2.2 Core Contribution to the QPS Action; 3.2.3 Hydrodynamic Contribution to the Phase-Slip Action 3.2.4 Quantum Phase-Slip Rate3.2.5 Quantum Phase-Slip Interaction and Quantum-Phase Transitions; 3.2.6 Wire Resistance and Nonlinear Voltage-Current Relations; 3.3 Short-Wire Superconductor-Insulator Transition: Büchler, Geshkenbein and Blatter Theory; 3.4 Refael, Demler, Oreg, Fisher Theory -- 1D Josephson Junction Chains and Nanowires; 3.4.1 Discrete Model of 1D Josephson Junction Chains; 3.4.2 Resistance of the Josephson Junctions and the Nanowire; 3.4.3 Mean Field Theory of the Short-Wire SIT; 3.5 Khlebnikov-Pryadko Theory -- Momentum Conservation 3.5.1 Gross-Pitaevskii Model and Quantum Phase Slips3.5.2 Disorder Averaging, Quantum Phase Transition and Scaling for the Resistance and Current-Voltage Relations; 3.5.3 Short Wires -- Linear QPS Interaction and Exponential QPS Rate; 3.6 Quantum Criticality and Pair-Breaking -- Universal Conductance and Thermal Transport in Short Wires; References; 4 Duality; 4.1 Introduction; 4.2 Mooij-Nazarov Theory of Duality -- QPS Junctions; 4.2.1 QPS Junction Voltage-Charge Relationship and Shapiro Current Steps; 4.2.2 QPS Qubits |
ctrlnum | (OCoLC)841169553 (DE-599)BVBBV041829447 |
dewey-full | 620.115 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.115 |
dewey-search | 620.115 |
dewey-sort | 3620.115 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05658nmm a2200697zc 4500</leader><controlfield tag="001">BV041829447</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140523 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">140506s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527649044</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-527-64904-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527649051</subfield><subfield code="c">mobi</subfield><subfield code="9">978-3-527-64905-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527649068</subfield><subfield code="c">ePub</subfield><subfield code="9">978-3-527-64906-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527649075</subfield><subfield code="c">ePDF</subfield><subfield code="9">978-3-527-64907-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9783527649044</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)841169553</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041829447</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-861</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.115</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 2200</subfield><subfield code="0">(DE-625)146356:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 5050</subfield><subfield code="0">(DE-625)146409:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8320</subfield><subfield code="0">(DE-625)146595:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3700</subfield><subfield code="0">(DE-625)157333:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Altomare, Fabio</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1034945092</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">One-dimensional superconductivity in nanowires</subfield><subfield code="c">Fabio Altomare and Albert M. Chang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4.3 Khlebnikov Theory of Interacting Phase Slips in Short Wires: Quark Confinement Physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Devoted to the topic of superconductivity in very narrow metallic wires, the goal of this book is to produce a relatively self-contained introduction to the theoretical, experimental and phenomenological aspects of the 1-dimensional superconducting nanowire system</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">OneDimensional Superconductivity in Nanowires; Contents; Preface; Abbreviations and Symbols; Color Plates; Part One Theoretical Aspects of Superconductivity in 1D Nanowires; 1 Superconductivity: Basics and Formulation; 1.1 Introduction; 1.2 BCS Theory; 1.3 Bogoliubov-de Gennes Equations -- Quasiparticle Excitations; 1.4 Ginzburg-Landau Theory; 1.4.1 Time-Dependent Ginzburg-Landau Theory; 1.5 Gorkov Green's Functions, Eilenberger-Larkin-Ovchinnikov Equations, and the Usadel Equation; 1.6 Path Integral Formulation; References; 2 1D Superconductivity: Basic Notions; 2.1 Introduction</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">2.2 Shape Resonances -- Oscillations in Superconductivity Properties2.2.1 Early Treatments of Shape Resonances in 2D Films; 2.2.2 Bogoliubov-de Gennes Equations, Finite Temperature, and Parabolic-Band Approximation for Realistic Materials; 2.2.3 Numerical Solutions and Thin Film Shape Resonances; 2.2.4 1D Nanowires -- Shape Resonances and Size Oscillations; 2.3 Superconductivity in Carbon Nanotubes -- Single-Walled Bundles and Individual Multiwalled Nanotubes; 2.4 Phase Slips; 2.4.1 Finite Voltage in a Superconducting Wire and Phase Slip; 2.4.2 Phase Slip in a Josephson Junction</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">2.4.3 Langer-Ambegaokar Free Energy Minima in the Ginzburg-Landau Approximation2.4.4 Transition Rate and Free Energy Barrier; 2.4.5 Free Energy Barrier for a Phase Slip in the Ginzburg-Landau Theory; 2.4.6 Physical Scenario of a Thermally-Activated Phase Slip; 2.4.7 McCumber-Halperin Estimate of the Attempt Frequency; References; 3 Quantum Phase Slips and Quantum Phase Transitions; 3.1 Introduction; 3.2 Zaikin-Golubev Theory; 3.2.1 Derivation of the Low Energy Effective Action; 3.2.2 Core Contribution to the QPS Action; 3.2.3 Hydrodynamic Contribution to the Phase-Slip Action</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">3.2.4 Quantum Phase-Slip Rate3.2.5 Quantum Phase-Slip Interaction and Quantum-Phase Transitions; 3.2.6 Wire Resistance and Nonlinear Voltage-Current Relations; 3.3 Short-Wire Superconductor-Insulator Transition: Büchler, Geshkenbein and Blatter Theory; 3.4 Refael, Demler, Oreg, Fisher Theory -- 1D Josephson Junction Chains and Nanowires; 3.4.1 Discrete Model of 1D Josephson Junction Chains; 3.4.2 Resistance of the Josephson Junctions and the Nanowire; 3.4.3 Mean Field Theory of the Short-Wire SIT; 3.5 Khlebnikov-Pryadko Theory -- Momentum Conservation</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">3.5.1 Gross-Pitaevskii Model and Quantum Phase Slips3.5.2 Disorder Averaging, Quantum Phase Transition and Scaling for the Resistance and Current-Voltage Relations; 3.5.3 Short Wires -- Linear QPS Interaction and Exponential QPS Rate; 3.6 Quantum Criticality and Pair-Breaking -- Universal Conductance and Thermal Transport in Short Wires; References; 4 Duality; 4.1 Introduction; 4.2 Mooij-Nazarov Theory of Duality -- QPS Junctions; 4.2.1 QPS Junction Voltage-Charge Relationship and Shapiro Current Steps; 4.2.2 QPS Qubits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-dimensional semiconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Material Science</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Eindimensionaler Leiter</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanodraht</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Supraleitung</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanowires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconductivity</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Supraleitung</subfield><subfield code="0">(DE-588)4058651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanodraht</subfield><subfield code="0">(DE-588)4707308-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanodraht</subfield><subfield code="0">(DE-588)4707308-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Supraleitung</subfield><subfield code="0">(DE-588)4058651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, Albert M.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1034945181</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-527-40995-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9783527649044</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHR_PDA_WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027274366</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9783527649044</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9783527649044</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBT_Wiley_EK_2014</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV041829447 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:06:22Z |
institution | BVB |
isbn | 9783527649044 9783527649051 9783527649068 9783527649075 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027274366 |
oclc_num | 841169553 |
open_access_boolean | |
owner | DE-703 DE-861 |
owner_facet | DE-703 DE-861 |
physical | 1 Online-Ressource |
psigel | ZDB-35-WIC FHR_PDA_WIC UBG_PDA_WIC ZDB-35-WIC FRO_PDA_WIC ZDB-35-WIC UBT_Wiley_EK_2014 |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Altomare, Fabio Verfasser (DE-588)1034945092 aut One-dimensional superconductivity in nanowires Fabio Altomare and Albert M. Chang Weinheim Wiley-VCH 2013 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier 4.3 Khlebnikov Theory of Interacting Phase Slips in Short Wires: Quark Confinement Physics Devoted to the topic of superconductivity in very narrow metallic wires, the goal of this book is to produce a relatively self-contained introduction to the theoretical, experimental and phenomenological aspects of the 1-dimensional superconducting nanowire system OneDimensional Superconductivity in Nanowires; Contents; Preface; Abbreviations and Symbols; Color Plates; Part One Theoretical Aspects of Superconductivity in 1D Nanowires; 1 Superconductivity: Basics and Formulation; 1.1 Introduction; 1.2 BCS Theory; 1.3 Bogoliubov-de Gennes Equations -- Quasiparticle Excitations; 1.4 Ginzburg-Landau Theory; 1.4.1 Time-Dependent Ginzburg-Landau Theory; 1.5 Gorkov Green's Functions, Eilenberger-Larkin-Ovchinnikov Equations, and the Usadel Equation; 1.6 Path Integral Formulation; References; 2 1D Superconductivity: Basic Notions; 2.1 Introduction 2.2 Shape Resonances -- Oscillations in Superconductivity Properties2.2.1 Early Treatments of Shape Resonances in 2D Films; 2.2.2 Bogoliubov-de Gennes Equations, Finite Temperature, and Parabolic-Band Approximation for Realistic Materials; 2.2.3 Numerical Solutions and Thin Film Shape Resonances; 2.2.4 1D Nanowires -- Shape Resonances and Size Oscillations; 2.3 Superconductivity in Carbon Nanotubes -- Single-Walled Bundles and Individual Multiwalled Nanotubes; 2.4 Phase Slips; 2.4.1 Finite Voltage in a Superconducting Wire and Phase Slip; 2.4.2 Phase Slip in a Josephson Junction 2.4.3 Langer-Ambegaokar Free Energy Minima in the Ginzburg-Landau Approximation2.4.4 Transition Rate and Free Energy Barrier; 2.4.5 Free Energy Barrier for a Phase Slip in the Ginzburg-Landau Theory; 2.4.6 Physical Scenario of a Thermally-Activated Phase Slip; 2.4.7 McCumber-Halperin Estimate of the Attempt Frequency; References; 3 Quantum Phase Slips and Quantum Phase Transitions; 3.1 Introduction; 3.2 Zaikin-Golubev Theory; 3.2.1 Derivation of the Low Energy Effective Action; 3.2.2 Core Contribution to the QPS Action; 3.2.3 Hydrodynamic Contribution to the Phase-Slip Action 3.2.4 Quantum Phase-Slip Rate3.2.5 Quantum Phase-Slip Interaction and Quantum-Phase Transitions; 3.2.6 Wire Resistance and Nonlinear Voltage-Current Relations; 3.3 Short-Wire Superconductor-Insulator Transition: Büchler, Geshkenbein and Blatter Theory; 3.4 Refael, Demler, Oreg, Fisher Theory -- 1D Josephson Junction Chains and Nanowires; 3.4.1 Discrete Model of 1D Josephson Junction Chains; 3.4.2 Resistance of the Josephson Junctions and the Nanowire; 3.4.3 Mean Field Theory of the Short-Wire SIT; 3.5 Khlebnikov-Pryadko Theory -- Momentum Conservation 3.5.1 Gross-Pitaevskii Model and Quantum Phase Slips3.5.2 Disorder Averaging, Quantum Phase Transition and Scaling for the Resistance and Current-Voltage Relations; 3.5.3 Short Wires -- Linear QPS Interaction and Exponential QPS Rate; 3.6 Quantum Criticality and Pair-Breaking -- Universal Conductance and Thermal Transport in Short Wires; References; 4 Duality; 4.1 Introduction; 4.2 Mooij-Nazarov Theory of Duality -- QPS Junctions; 4.2.1 QPS Junction Voltage-Charge Relationship and Shapiro Current Steps; 4.2.2 QPS Qubits Low-dimensional semiconductors Nanostructured materials TECHNOLOGY & ENGINEERING / Material Science bisacsh Eindimensionaler Leiter gnd Nanodraht gnd Supraleitung gnd Nanowires Superconductivity Supraleitung (DE-588)4058651-0 gnd rswk-swf Nanodraht (DE-588)4707308-1 gnd rswk-swf Nanodraht (DE-588)4707308-1 s Supraleitung (DE-588)4058651-0 s DE-604 Chang, Albert M. Verfasser (DE-588)1034945181 aut Erscheint auch als Druckausgabe 978-3-527-40995-2 https://onlinelibrary.wiley.com/doi/book/10.1002/9783527649044 Verlag Volltext |
spellingShingle | Altomare, Fabio Chang, Albert M. One-dimensional superconductivity in nanowires OneDimensional Superconductivity in Nanowires; Contents; Preface; Abbreviations and Symbols; Color Plates; Part One Theoretical Aspects of Superconductivity in 1D Nanowires; 1 Superconductivity: Basics and Formulation; 1.1 Introduction; 1.2 BCS Theory; 1.3 Bogoliubov-de Gennes Equations -- Quasiparticle Excitations; 1.4 Ginzburg-Landau Theory; 1.4.1 Time-Dependent Ginzburg-Landau Theory; 1.5 Gorkov Green's Functions, Eilenberger-Larkin-Ovchinnikov Equations, and the Usadel Equation; 1.6 Path Integral Formulation; References; 2 1D Superconductivity: Basic Notions; 2.1 Introduction 2.2 Shape Resonances -- Oscillations in Superconductivity Properties2.2.1 Early Treatments of Shape Resonances in 2D Films; 2.2.2 Bogoliubov-de Gennes Equations, Finite Temperature, and Parabolic-Band Approximation for Realistic Materials; 2.2.3 Numerical Solutions and Thin Film Shape Resonances; 2.2.4 1D Nanowires -- Shape Resonances and Size Oscillations; 2.3 Superconductivity in Carbon Nanotubes -- Single-Walled Bundles and Individual Multiwalled Nanotubes; 2.4 Phase Slips; 2.4.1 Finite Voltage in a Superconducting Wire and Phase Slip; 2.4.2 Phase Slip in a Josephson Junction 2.4.3 Langer-Ambegaokar Free Energy Minima in the Ginzburg-Landau Approximation2.4.4 Transition Rate and Free Energy Barrier; 2.4.5 Free Energy Barrier for a Phase Slip in the Ginzburg-Landau Theory; 2.4.6 Physical Scenario of a Thermally-Activated Phase Slip; 2.4.7 McCumber-Halperin Estimate of the Attempt Frequency; References; 3 Quantum Phase Slips and Quantum Phase Transitions; 3.1 Introduction; 3.2 Zaikin-Golubev Theory; 3.2.1 Derivation of the Low Energy Effective Action; 3.2.2 Core Contribution to the QPS Action; 3.2.3 Hydrodynamic Contribution to the Phase-Slip Action 3.2.4 Quantum Phase-Slip Rate3.2.5 Quantum Phase-Slip Interaction and Quantum-Phase Transitions; 3.2.6 Wire Resistance and Nonlinear Voltage-Current Relations; 3.3 Short-Wire Superconductor-Insulator Transition: Büchler, Geshkenbein and Blatter Theory; 3.4 Refael, Demler, Oreg, Fisher Theory -- 1D Josephson Junction Chains and Nanowires; 3.4.1 Discrete Model of 1D Josephson Junction Chains; 3.4.2 Resistance of the Josephson Junctions and the Nanowire; 3.4.3 Mean Field Theory of the Short-Wire SIT; 3.5 Khlebnikov-Pryadko Theory -- Momentum Conservation 3.5.1 Gross-Pitaevskii Model and Quantum Phase Slips3.5.2 Disorder Averaging, Quantum Phase Transition and Scaling for the Resistance and Current-Voltage Relations; 3.5.3 Short Wires -- Linear QPS Interaction and Exponential QPS Rate; 3.6 Quantum Criticality and Pair-Breaking -- Universal Conductance and Thermal Transport in Short Wires; References; 4 Duality; 4.1 Introduction; 4.2 Mooij-Nazarov Theory of Duality -- QPS Junctions; 4.2.1 QPS Junction Voltage-Charge Relationship and Shapiro Current Steps; 4.2.2 QPS Qubits Low-dimensional semiconductors Nanostructured materials TECHNOLOGY & ENGINEERING / Material Science bisacsh Eindimensionaler Leiter gnd Nanodraht gnd Supraleitung gnd Nanowires Superconductivity Supraleitung (DE-588)4058651-0 gnd Nanodraht (DE-588)4707308-1 gnd |
subject_GND | (DE-588)4058651-0 (DE-588)4707308-1 |
title | One-dimensional superconductivity in nanowires |
title_auth | One-dimensional superconductivity in nanowires |
title_exact_search | One-dimensional superconductivity in nanowires |
title_full | One-dimensional superconductivity in nanowires Fabio Altomare and Albert M. Chang |
title_fullStr | One-dimensional superconductivity in nanowires Fabio Altomare and Albert M. Chang |
title_full_unstemmed | One-dimensional superconductivity in nanowires Fabio Altomare and Albert M. Chang |
title_short | One-dimensional superconductivity in nanowires |
title_sort | one dimensional superconductivity in nanowires |
topic | Low-dimensional semiconductors Nanostructured materials TECHNOLOGY & ENGINEERING / Material Science bisacsh Eindimensionaler Leiter gnd Nanodraht gnd Supraleitung gnd Nanowires Superconductivity Supraleitung (DE-588)4058651-0 gnd Nanodraht (DE-588)4707308-1 gnd |
topic_facet | Low-dimensional semiconductors Nanostructured materials TECHNOLOGY & ENGINEERING / Material Science Eindimensionaler Leiter Nanodraht Supraleitung Nanowires Superconductivity |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9783527649044 |
work_keys_str_mv | AT altomarefabio onedimensionalsuperconductivityinnanowires AT changalbertm onedimensionalsuperconductivityinnanowires |