Advanced concepts in photovoltaics:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge
Royal Soc. of Chemistry
2014
|
Schriftenreihe: | RSC energy and environment series
11 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 608 S. Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV041819179 | ||
003 | DE-604 | ||
005 | 20150130 | ||
007 | t | ||
008 | 140428s2014 ad|| |||| 00||| eng d | ||
015 | |a GBB414272 |2 dnb | ||
020 | |z 9781849735919 |9 978-1-84973-591-9 | ||
035 | |a (OCoLC)889714101 | ||
035 | |a (DE-599)BVBBV041819179 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-898 |a DE-11 | ||
084 | |a ZP 3730 |0 (DE-625)157971: |2 rvk | ||
245 | 1 | 0 | |a Advanced concepts in photovoltaics |c ed. by Arthur J. Nozik ... |
264 | 1 | |a Cambridge |b Royal Soc. of Chemistry |c 2014 | |
300 | |a XXI, 608 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a RSC energy and environment series |v 11 | |
650 | 4 | |a Photovoltaic power generation | |
650 | 4 | |a Photovoltaic cells | |
700 | 1 | |a Nozik, Arthur J. |d 1936- |e Sonstige |0 (DE-588)133978788 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-1-84973-995-5 |
830 | 0 | |a RSC energy and environment series |v 11 |w (DE-604)BV036744686 |9 11 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027264332&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027264332 |
Datensatz im Suchindex
_version_ | 1804152148871610368 |
---|---|
adam_text | Titel: Advanced concepts in photovoltaics
Autor: Nozik, Arthur J
Jahr: 2014
Contents
Chapter 1 Crystalline Silicon Solar Cells with High Efficiency 1
Stefan W. Glunz
1.1 Introduction 1
1.2 Efficiency Limitations 2
1.2.1 Theoretical Limitations: The Auger Limit 2
1.2.2 Practica! Limitations 5
1.3 Screen-printed Al-BSF Solar Cells on p-type Silicon 7
1.3.1 Standard Al-BSF Cell 9
1.3.2 Improved Al-BSF Formation by Boron
Co-doping 10
1.3.3 Improved Emitter 10
1.4 Solar Cells with Dielectric Rear Passivation on p-type
Silicon 11
1.4.1 Rear Passivation Layers 12
1.4.2 Contacting Schemes 13
1.4.3 Lifetime Limitations in Boron-doped p-type
Silicon 13
1.5 Solar Cells on n-type Silicon 14
1.5.1 n-type BSF Cell Structures 15
1.5.2 n-type Cell Structures with Dielectric Rear
Passivation 17
1.5.3 Heterojunction Solar Cells 17
1.5.4 Back-contacted Back-junction Solar Cells 19
1.5.5 Back-contacted Back-junction Solar Cells
with Passivated Contacts 20
1.6 Conclusion 20
Acknowledgements 21
References 21
RSC Energy and Environment Series No. 11
Advanced Concepts in Photovoltaics
Edited by Arthur J Nozik, Gavin Conibeer and Matthew C Beard
© The Royal Society of Chemistry 2014
Published by the Royal Society of Chemistry, www.rsc.org
xii Contents
Chapter 2 Tandem and Multiple-junction Devices Based on
Thin-film Silicon Technology 30
Christophe Ballif, Mathieu Boccard, Karin Söderström,
Gregory Bugnon, Fanny Meillaud and Nicolas Wyrsch
2.1 Introduction 30
2.2 Material Properties 32
2.2.1 Hydrogenated Amorphous Silicon (a-Si:H)
and its Alloys 32
2.2.2 Hydrogenated Microcrystalline Silicon
(uc-Si:H) and its Alloys 34
2.3 Basis of Thin-film Silicon-based Multiple-junction
Devices 38
2.3.1 Solar Cells Based on Thin Films of Silicon 38
2.3.2 Possible Multiple-junction Devices Based
on Thin Films of Silicon 38
2.3.3 Matching Considerations 40
2.3.4 Combining Light Management and
High-quality Absorber Layers 40
2.4 State of the Art 41
2.5 Current Limitations and Prospective
Concepts 42
2.5.1 Increasing Light Absorption in the
Absorber 43
2.5.2 Improvements in Silicon Materials 48
2.6 Conclusions and Perspectives 51
References 51
Chapter 3 Thin-film CdTe Photovoltaic Solar Cell Devices 61
Timothy Gessert, Brian McCandless and
Chris Ferekides
3.1 Introduction 61
3.1.1 History of CdTe Photovoltaic
Devices 62
3.1.2 Layer-specific Process Description for
Superstrate CdTe Devices 65
3.2 Important and Under-reported Processes 70
3.2.1 Buffer Layers 70
3.2.2 Incorporation of Cu 72
3.2.3 Defects and Defect Modeling 74
3.2.4 Junction Formation and Location 79
3.3 Conclusions 81
Acknowledgements 81
References 81
Contents xiii
Chapter 4 III-V Multi-junction Solar Cells 87
Simon P. Philipps and Andreas W. Bett
4.1 Introduction 87
4.2 On the Efficiency of III-V Multi-junction Solar Cells 91
4.2.1 Photovoltaic Cells and Monochromatic Light:
A Perfect Match 91
4.2.2 Towards a Match with the Solar Spectrum:
Stacking Photovoltaic Cells 93
4.3 The Technological Toolbox to Fabricate III-V
Multi-junction Solar Cells 95
4.3.1 Epitaxial Growth Methods 96
4.3.2 Substrates 98
4.3.3 Epitaxial Growth Concepts 99
4.3.4 Materials 101
4.3.5 Post-growth Technological Processing 103
4.4 Some Members of the III-V Multi-junction Solar Cell
Family 104
4.4.1 Upright Metamorphic Devices on
Ge Substrates 104
4.4.2 Inverted Metamorphic Multi-junction
Solar Cells 105
4.4.3 III-V on Si 106
4.4.4 Wafer-bonded Multi-junction Solar Cells 108
4.4.5 Lattice-matched Growth of more than
Three Junctions 108
4.5 Conclusion 108
Acknowledgements 109
References 109
Chapter 5 Thin-film Photovoltaics Based on Earth-abundant
Materials 118
Diego Colombara, Phillip Dale, Laurence Peter,
Jonathan Scragg and Susanne Siebentritt
5.1 Introduction 118
5.1.1 Future Requirements for Photovoltaics: 2050
Scenarios 118
5.1.2 Resource Implications for Thin-film
Photovoltaics 119
5.1.3 Earth-abundant Absorbers 120
5.1.4 The Scope of the Chapter 122
5.2 Kesterite: a Case Study 122
5.2.1 Iso-electronic Substitution: An Introduction
to Cu2ZnSnS(Se)4 122
xiv Contents
5.2.2 A Comparison of Phase Equilibria in the
Cu-In-Se and Cu-Zn-Sn-Se Systems 128
5.2.3 Electronic Properties 131
5.3 Preparative Routes to Earth-abundant
Absorber Films 136
5.3.1 Thermodynamic Considerations 137
5.3.2 Kinetic Considerations 142
5.3.3 Preparative Methods 144
5.3.4 Summary 149
5.4 Device Fabrication and Characterization 150
5.5 Other Earth-abundant Materials 151
5.5.1 Phase Equilibria Considerations 152
5.5.2 Phase Stability Considerations 153
5.5.3 Opto-electronic Considerations 157
5.5.4 Application of Criteria of Earth Abundance,
Thermodynamics, and Opto-electronic
Properties to Other Potential Absorber
Materials 159
5.6 Summary and Outlook 169
Acknowledgements 169
References 170
Chapter 6 Chemistry of Sensitizers for Dye-sensitized Solar Cells 186
Peng Gao, Michael Grätzel and M. D. K. Nazeeruddin
6.1 Introduction 186
6.2 Ruthenium Sensitizers 192
6.2.1 High Molar Extinction Coefficient Sensitizers 195
6.2.2 Panchromatic Ruthenium Sensitizers 195
6.2.3 Cyclometallated NCS-free Ruthenium
Sensitizers 200
6.2.4 Cyclometallated NCS-free Ruthenium Dyes
with a Com/Cou Redox Shuttle 201
6.3 Metal-free Organic Sensitizers 204
6.3.1 Organic Sensitizers and their Cobalt
Electrolyte Compatibility 206
6.3.2 Size Effect of the Donor Groups in the Cobalt
Electrolyte Compatibility of Dyes 208
6.3.3 Towards Cobalt Electrolyte Compatible
Panchromatic Organic Dyes 209
6.3.4 Donor-Chromophore-Acceptor-based
Asymmetrie Diketopyrrolopyrrole Sensitizers 213
6.3.5 Ullazine-based Sensitizers 216
6.4 Porphyrin Sensitizers 217
6.4.1 Towards High Efficiency and Cobalt
Compatible meso-Porphyrin Sensitizers 219
Contents xv
6.4.2 Towards Panchromatic, High Efficiency and
Cobalt Compatible meso-Porphyrin
Sensitizers 221
6.5 Perovskite Sensitizers for Solid-state Solar
Cells 223
6.5.1 One-step Precursor Solution Deposition 225
6.5.2 Two-step Sequential Deposition
Method 225
6.5.3 Dual-source Vapour Deposition 227
6.6 Conclusion 229
Acknowledgements 230
References 231
Chapter 7 Perovskite Solar Cells 242
Nam-Gyu Park
7.1 Introduction 242
7.2 Synthesis of Organolead Halide Perovskite 244
7.3 Crystal Structure and Related Properties 244
7.4 Opto-electronic Properties 246
7.5 Perovskite Solar Cell Fabrication 249
7.6 Device Structures and Performances 250
7.6.1 CH3NH3PbI3-based Perovskite Solar
Cells 250
7.6.2 Mixed Halide and Non-iodide Perovskite
Solar Cells 252
7.6.3 Planar Heterojunction Without Mesoporous
Oxide Layers 254
7.7 Summary 255
Acknowledgements 255
References 255
Chapter 8 All-oxide Photovoltaics 258
Sven Rühle and Arie Zaban
8.1 Introduction to All-oxide Photovoltaics 258
8.2 Solar Cell Design Rules 259
8.2.1 Light Absorption 259
8.2.2 Charge Transport 261
8.2.3 Selective Contacts 262
8.2.4 Optimized Energy Levels at Interfaces 263
8.3 Metal Oxides for All-oxide Photovoltaics 264
8.3.1 Electronic Properties 264
8.3.2 Metal Oxide Light Absorber 266
8.3.3 Wide Bandgap Metal Oxides 267
xvi Contents
8.4 Cu20-based Photovoltaics 269
8.4.1 Cu20 Synthesis 269
8.4.2 Electronic and Optical Properties of Cu20 271
8.4.3 Cu20 Schottky Junction Cells 272
8.4.4 Cu20-based Heterojunction Cells 274
8.4.5 Cu20 Homojunction Cells 276
8.4.6 Nano-structured Cu20-based Photovoltaic Cells 276
8.5 Further Metal Oxide-based Photovoltaics 277
8.5.1 ZnO-Fe2Os Heterojunction Solar Cells 277
8.5.2 Bi203 Solar Cells 277
8.5.3 Ferro-electric BiFe03 Solar Cells 278
8.6 Combinatorial Material Science for Novel Metal
Oxides 279
8.6.1 Density Functional Theory 279
8.6.2 Combinatorial Material and
Device Fabrication 280
References 281
Chapter 9 Active Layer Limitations and Non-geminate
Recombination in Polymer-Fullerene Bulk
Heterojunction Solar Cells 287
Tracey M. Clarke, Guanran Zhang and Attila f. Mozer
9.1 Introduction 287
9.2 Active Layer Limitations 299
9.3 Charge Transport and Recombination 301
9.4 Non-Langevin Bimolecular Recombination 309
9.5 Mechanism of Reduced Recombination 314
9.6 Summary and Outlook 318
References 319
Chapter 10 Singlet Fission and 1,3-Diphenylisobenzofuran as a
Model Chromophore 324
Justin C. Johnson and Josef Michl
10.1 Introduction 324
10.1.1 Singlet Fission 324
10.1.2 Singlet Fission Chromophores 327
10.1.3 Chromophore Coupling 328
10.2 1,3-Diphenylisobenzofuran (1) 330
10.2.1 The Chromophore 1 330
10.2.2 Polycrystalline Layers of 1 331
10.2.3 Covalent Dimers of 1 335
10.3 Current and Future Activities 341
Acknowledgements 342
References 342
Contents xvii
Chapter 11 Quantum Confined Semiconductors for Enhancing Solar
Photoconversion through Multiple Exciton Generation 345
Matthew C. Beard, Alexander H. Ip, Joseph M. Luther,
Edward H. Sargent and Arthur J. Nozik
11.1 Introduction to Colloidal Quantum Dots 345
11.1.1 Tuning of Electronic Properties 345
11.1.2 Competition Between MEG and Hot-carrier
Cooling via Phonon Emission 347
11.1.3 Benefits to Solar Photoconversion 350
11.2 Nanocrystal Synthesis and Physical Properties 352
11.2.1 Solution Phase Synthesis 352
11.2.2 Shape and Composition Control 354
11.2.3 Measuring Multiple Exciton Generation 358
11.3 Quantum Dot Solar Cells 361
11.3.1 Quantum Dot Films 361
11.3.2 Quantum Dot Material Selection 364
11.3.3 p-n Heterojunction Quantum Dot Solar
Cells 365
11.3.4 Quantum Junction Solar Cells 368
11.3.5 Multiple Exciton Generation in a Quantum
Dot Solar Cell 368
11.3.6 Multi-junction Solar Cells 369
11.4 Conclusions and Future Directions 370
Acknowledgements 372
References 372
Chapter 12 Hot Carrier Solar Cells 379
Gavin Conibeer, Jean-Francois Guillemoles, Feng Yu and
Hugo Levard
12.1 Introduction to Hot Carrier cells 379
12.2 Modelling of Hot Carrier Solar Cells 380
12.2.1 Thermodynamic Analysis for the Hot
Carrier Cell 380
12.2.2 Models for Ideal Hot Carrier Cells 381
12.2.3 Detailed Balance Models and Limit of
Efficiency 383
12.2.4 The Mechanisms of Carrier Thermalization 386
12.2.5 Modelling of Hot Carrier Solar Cell
Efficiency 387
12.2.6 Modelling of Non-ideal ESCs 388
12.2.7 Monte Carlo Modelling of Real Material
Systems 391
12.2.8 Summary of Modelling Section 394
Contents
12.3 Hot Carrier Absorbers: Slowing of Carrier
Cooling 394
12.3.1 Electron-Phonon Interactions 395
12.3.2 Phonon Decay Mechanisms 396
12.3.3 Nanostructures for the Absorber 397
12.3.4 Hot Carrier Cell Absorber Requisite
Properties 399
12.4 Hot Carrier Absorber: Choice of Materials 400
12.4.1 Analogues of InN 400
12.4.2 Modelling Phonon Properties in Group IV
and III-V Compounds 403
12.4.3 Phonon Modulation in Quantum Dot
Nanostructure Arrays for Absorbers 409
12.5 Contacting Hot Carrier Cells 414
12.5.1 Modelling Optimized Materials for Energy
Selective Contacts 414
12.5.2 Triple Barrier Resonant Tunnelling
Structures for Carrier Selection and
Rectification 417
12.5.3 Optical Coupling for Hot
Carrier Cells 418
12.6 Summary and Conclusion 419
References 421
Chapter 13 Intermediate Band Solar Cells 425
Yoshitaka Okada, Tomah Sogabe and Yasushi Shoji
13.1 Introduction 425
13.2 Numerical Analysis of QD-IB Solar Cell
Characteristics 428
13.3 Fabrication of QD-IB Solar Cells 431
13.3.1 Growth and Properties of High-density
InAs QD Arrays on High-index
Substrate 431
13.3.2 InAs/GaAs QD-IB Solar Cells Fabricated on
High-index Substrate 437
13.3.3 Growth and Properties of InAs/GaAsSb
QDs with Type-II Band Alignment 441
13.3.4 InAs/GaAsSb QD-IB Solar Cells with Type-II
Band Alignment 444
13.3.5 Characteristics of QD-IB Solar Cells under
Concentrated Sunlight 448
13.4 Conclusion and Future Research 449
Acknowledgements 451
References 452
Contents xix
Chapter 14 Spectral Conversion for Thin Film Solar Cells and
Luminescent Solar Concentrators 455
Wilfried van Sark, Jessica de Wild, Zachar Krumer,
Celso de Mello Donegä and Ruud Schropp
14.1 Introduction 456
14.1.1 Spectral Conversion 456
14.1.2 This Chapter 458
14.2 Up-conversion for Thin Film Silicon 459
14.2.1 Introduction 459
14.2.2 Up-conversion Results 461
14.3 Luminescent Solar Concentrators 469
14.3.1 Operating Principles 470
14.3.2 Efficiency 471
14.3.3 Alternative Luminescent Species 473
14.3.4 Re-absorption 476
14.4 Conclusion and Outlook 483
Acknowledgements 484
References 484
Chapter 15 Triplet-triplet Annihilation Up-conversion 489
Timothy W. Schmidt and MuradJ. Y. Tayebjee
15.1 Introduction 489
15.2 The Limiting Efficiency of a Single Threshold
Solar Cell 490
15.2.1 Photon Ratchet Model 490
15.3 Up-conversion 492
15.3.1 Summary 495
15.4 Triplet-triplet Annihilation 495
15.4.1 Typical TTA Up-conversion Combinations 496
15.4.2 Efficiency Considerations 497
15.5 Application to Photovoltaics 499
15.6 Measurement 500
15.7 The Figure of Merit 502
15.8 Prospects 503
References 504
Chapter 16 Quantum Rectennas for Photovoltaics 506
Feng Yu, Garret Moddel and Richard Corkish
16.1 Introduction 506
16.2 History of Quantum Antennas for
Photovoltaics Research 507
16.2.1 Optical and Infrared Rectennas 507
16.2.2 Wireless Power Transmission 511
xx Contents
16.2.3 Radio-powered Devices 512
16.2.4 Radio Astronomy 512
16.3 Research Problems Concerning Rectennas for
Photovoltaics 512
16.3.1 Fundamental Problems 512
16.3.2 Practical Problems 520
16.4 Thermodynamics of Rectennas 526
16.4.1 Broadband Antenna Modeled as a
Resistor 527
16.4.2 Energetics of Thermal Rectification 529
16.5 Quantum Rectification 531
16.6 Broadband Rectification Efficiency Limit 534
16.7 High-frequency Rectifiers 536
16.7.1 MIM/MIIM Rectifiers 536
16.7.2 New Concepts for High Frequency 537
16.8 Summary and Conclusions 542
Acknowledgements 543
References 543
Chapter 17 Real World Efficiency Limits: the Shockley-Queisser
Model as a Starting Point 547
Pabitra K. Nayak and David Cohen
17.1 Introduction 547
17.2 Efficiency of Different Single-junction Cells and
Performance Analysis Based on Empirical Criteria 549
17.2.1 Possibilities for Technological Progress 551
17.2.2 Current Efficiency (/sc/Zscmax, .W/scmax
and/MP//sc) 553
17.2.3 Photon Energy Loss: Present Status of
Single-junction Solar Cells 556
17.3 Fill Factor and Disorder 563
17.4 Conclusion and Outlook 564
Acknowledgements 564
References 564
Chapter 18 Grid Parity and its Implications for Energy Policy and
Regulation 567
Muriel Watt and Iain MacGill
18.1 Introduction 567
18.1.1 Photovoltaics Early Promise and Progress 567
18.1.2 Photovoltaics Goes Mainstream 568
18.1.3 Where next for Photovoltaics 570
18.2 What is Photovoltaics Grid Parity? 571
18.2.1 Issues Around Grid Parity 573
Contents xxi
18.3 Past and Projected Photovoltaics and Grid
Cost Trajectories 576
18.3.1 Photovoltaics Costs 576
18.3.2 Grid Costs 577
18.3.3 Implications for Residential Photovoltaics
Systems 578
18.3.4 Implications for Utility-scale Photovoltaics
in Wholesale Energy Markets 580
18.4 The Broader Context of Photovoltaics Deployment 581
18.4.1 Technology 582
18.4.2 Market Access 582
18.4.3 Social Acceptance 583
18.5 A Changing Context for Photovoltaics
Policy Support 583
18.5.1 The Rationale for Photovoltaics
Policy Support 583
18.5.2 Photovoltaics Specific Policy Approaches
to Date 584
18.5.3 Broader Policy Settings 588
18.6 Implications of Photovoltaics Grid Parity for
Energy Markets 589
18.6.1 Implications of High Photovoltaics
Penetration on Other Stakeholders 589
18.6.2 Emerging Issues and Responses 590
18.7 Conclusion: Photovoltaics as Part of a Broader
Transformation 592
References 593
Subject Index 596
|
any_adam_object | 1 |
author_GND | (DE-588)133978788 |
building | Verbundindex |
bvnumber | BV041819179 |
classification_rvk | ZP 3730 |
ctrlnum | (OCoLC)889714101 (DE-599)BVBBV041819179 |
discipline | Energietechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01385nam a2200349 cb4500</leader><controlfield tag="001">BV041819179</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150130 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140428s2014 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB414272</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781849735919</subfield><subfield code="9">978-1-84973-591-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)889714101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041819179</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-898</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3730</subfield><subfield code="0">(DE-625)157971:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced concepts in photovoltaics</subfield><subfield code="c">ed. by Arthur J. Nozik ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Royal Soc. of Chemistry</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 608 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">RSC energy and environment series</subfield><subfield code="v">11</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photovoltaic power generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photovoltaic cells</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nozik, Arthur J.</subfield><subfield code="d">1936-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)133978788</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-1-84973-995-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">RSC energy and environment series</subfield><subfield code="v">11</subfield><subfield code="w">(DE-604)BV036744686</subfield><subfield code="9">11</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027264332&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027264332</subfield></datafield></record></collection> |
id | DE-604.BV041819179 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:06:07Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027264332 |
oclc_num | 889714101 |
open_access_boolean | |
owner | DE-898 DE-BY-UBR DE-11 |
owner_facet | DE-898 DE-BY-UBR DE-11 |
physical | XXI, 608 S. Ill., graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Royal Soc. of Chemistry |
record_format | marc |
series | RSC energy and environment series |
series2 | RSC energy and environment series |
spelling | Advanced concepts in photovoltaics ed. by Arthur J. Nozik ... Cambridge Royal Soc. of Chemistry 2014 XXI, 608 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier RSC energy and environment series 11 Photovoltaic power generation Photovoltaic cells Nozik, Arthur J. 1936- Sonstige (DE-588)133978788 oth Erscheint auch als Online-Ausgabe, PDF 978-1-84973-995-5 RSC energy and environment series 11 (DE-604)BV036744686 11 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027264332&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Advanced concepts in photovoltaics RSC energy and environment series Photovoltaic power generation Photovoltaic cells |
title | Advanced concepts in photovoltaics |
title_auth | Advanced concepts in photovoltaics |
title_exact_search | Advanced concepts in photovoltaics |
title_full | Advanced concepts in photovoltaics ed. by Arthur J. Nozik ... |
title_fullStr | Advanced concepts in photovoltaics ed. by Arthur J. Nozik ... |
title_full_unstemmed | Advanced concepts in photovoltaics ed. by Arthur J. Nozik ... |
title_short | Advanced concepts in photovoltaics |
title_sort | advanced concepts in photovoltaics |
topic | Photovoltaic power generation Photovoltaic cells |
topic_facet | Photovoltaic power generation Photovoltaic cells |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027264332&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV036744686 |
work_keys_str_mv | AT nozikarthurj advancedconceptsinphotovoltaics |