Handbook of the physics of thin-film solar cells:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2013
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XL, 882 S. graph. Darst. |
ISBN: | 364236747X 9783642367472 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041789168 | ||
003 | DE-604 | ||
005 | 20140919 | ||
007 | t | ||
008 | 140410s2013 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 1030437297 |2 DE-101 | |
020 | |a 364236747X |9 3-642-36747-X | ||
020 | |a 9783642367472 |9 978-3-642-36747-2 | ||
035 | |a (OCoLC)881302769 | ||
035 | |a (DE-599)DNB1030437297 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-11 |a DE-29T | ||
082 | 0 | |a 537.6226 |2 22/ger | |
084 | |a ZP 3730 |0 (DE-625)157971: |2 rvk | ||
084 | |a 620 |2 sdnb | ||
100 | 1 | |a Böer, Karl W. |d 1926-2018 |e Verfasser |0 (DE-588)121969657 |4 aut | |
245 | 1 | 0 | |a Handbook of the physics of thin-film solar cells |c Karl W. Böer |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2013 | |
300 | |a XL, 882 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Dünnschichtsolarzelle |0 (DE-588)4150833-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbleiterphysik |0 (DE-588)4113829-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dünnschichtsolarzelle |0 (DE-588)4150833-6 |D s |
689 | 0 | 1 | |a Halbleiterphysik |0 (DE-588)4113829-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-642-36748-9 |
856 | 4 | |u http://deposit.dnb.de/cgi-bin/dokserv?id=4247938&prov=M&dok_var=1&dok_ext=htm |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027234831&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027234831 |
Datensatz im Suchindex
_version_ | 1809769528484167680 |
---|---|
adam_text |
Contents
Part I Material Science of Solar Cells Atomic Binding Forces
1
Crystal Bonding
. 3
1.1
Ionic Bonding
. 4
1.2
Covalent Bonding
. 6
1.2.1
Tetrahedrally Bound Elements
. 11
1.3
Mixed Bonding
. 11
1.3.1
Tetrahedrally Bonded Binaries
. 11
1.4
Metallic Bonding (Delocalized Bonding)
. 14
1.5
Van
der Waals
Bonding
. 15
1.6
Hydrogen Bonding
. 15
1.7
Intermediate Valence Bonding
. 16
1.8
Other Bonding Considerations
. 16
1.9
Atomic and Ionic Radii
. 16
1.9.1
Bond-Length Relaxation in Alloys
. 19
2
Crystal Structure
. 23
2.1
Crystal System
. 24
2.2
The
Bravais
Lattice
. 24
2.3
Crystal Classes (The Point Groups)
. 24
2.4
The Space Groups
. 26
2.5
Crystallographic Classification
. 27
2.5.1
Morphology of Crystals
. 27
2.6
The Reciprocal Lattice
. 28
2.6.1
Wigner-Seitz Cells and Brillouin Zones
. 28
2.7
The Semiconductors
. 29
2.7.1
Element Semiconductors
. 30
2.7.2
Binary Semiconductors
. 30
2.7.3
Ternary, Quaternary Semiconductors
. 32
2.8 Superlattice
Structures
. 35
2.8.1
Superlattices and Brillouin Zones
. 35
xi
Contents
2.8.2 Superlattice
Deposition
. 36
2.8.3 Ultrathin Superlattices. 36
2.8.4
Intercalated Compounds
. 37
2.8.5
Organic Superlattices
. 37
2.9
Amorphous Structures
. 38
2.9.1
Glass-Forming Building Blocks
. 40
2.9.2
Coordination Number and Constraints
. 41
2.9.3
Short-Range vs. Intermediate-Range Order
. 41
2.9.4
Network Structures
. 41
2.9.5
Matrix Glasses; «Si:H
. 42
2.10
Quasicrystals
. 42
The Growth of Semiconductors
. 45
3.1
Nucleation
. 45
3.2
Growth Habit
. 46
3.2.1
Single Crystal Growth
. 46
3.2.2
Crystal Growth Techniques
. 47
3.3
Recrystallization
. 48
3.3.1
Slow Recrystallization
. 48
3.3.2
Stress-Enhanced Crystallization
. 48
3.3.3
Heating in the Presence of a Flux
. 49
3.3.4
Local Heating Induced Recrystallization
. 49
Crystal Defects
. 51
4.1
Defect Classifications
. 51
4.2
Point Defects
. 52
4.3
Donors and Acceptors
. 54
4.3.1
Defect Notation Within the Host Lattice
. 55
4.3.2 Substitutionais in
AB-Compounds
. 56
4.3.3
Vacancies and Interstitials
. 56
4.4
Line Defects
. 57
4.4.1
Edge Dislocations
. 57
4.4.2
Screw Dislocations
. 57
4.4.3
The Burgers Vector
. 58
4.4.4
Dislocations in Compounds
. 58
4.4.5
Partial Dislocations in Semiconductors
. 58
4.4.6
Electronic Defect Levels at Dislocations
. 60
4.4.7
Dislocation Counting
. 61
4.4.8
Motion and Creation of Dislocations
. 62
4.4.9
Dislocation Velocity
. 62
4.4.10
The Frank-Read Source
. 63
4.4.11
Electroplastic Effects
. 63
4.4.12
Disclinations
. 64
4.5
Surface Defects, Planar Faults
. 64
4.5.1
Stacking Faults
. 64
4.5.2
Grain Boundaries
. 65
4.5.3
Metal/Semiconductor Interfaces
. 69
Contents xiii
5 Photochemical
Reactions.
73
5.1
Defect-Chemical Reactions
. 73
5.1.1
Photochemistry by Giant Relaxation Oscillators
. 75
5.1.2
Other Examples
. 76
5.2
Photochemistry in Silver Halides
. 76
5.2.1
The Print-Out Effect
. 77
5.2.2
Film Sensitivity and Sensitization
. 77
5.3
Time-Dependent Photochemical Reactions
. 78
5.3.1
Photochemical Degradation
. 78
5.3.2
The Staebler-
Wroński
Effect
. 80
5.3.3
Fast Photochemical Processes
. 81
Part II Electronic Properties
6
Elements of Band Structure
. 85
6.1
The Proximity (Chemical) Approach
. 86
6.1.1
Electronic Structure of Amorphous Semiconductors
. 87
6.2
The Periodicity Approach
. 90
6.2.1
The Kronig-Penney Model
. 92
6.2.2
Periodicity of
E
(k); Reduced k-Vector
. 95
6.3
Newtonian Description of a Quasi-free Electron
. 96
6.3.1
The Effective Mass
. 98
6.4
Periodicity vs. Proximity Approach
. 101
6.4.1
Band-Edge Fuzzing (Deviation from Periodicity)
. 101
6.4.2
Discrete Defect Level in the Band Gap
. 102
7
Bands and Band Gaps in Solids
. 105
7.1
Valence and Conduction Bands
. 105
7.1.1
Insulators and Semiconductors
. 107
7.1.2
Electrons and Holes
. 107
7Л.З
Metals
. 109
7.1.4
Semimetal
s
and Narrow Gap Semiconductors
. 110
7.1.5
The Shape of Valence and Conduction Bands
in Semiconductors
. 112
7.1.6
Constant Energy Surface Within the Brillouin Zone
. 112
7.1.7
The Effective Mass in Real Bands
. 115
7.1.8
The Conduction Bands
. 116
7.1.9
The Valence Band
. 117
7.1.10
Probing Bands with Cyclotron Resonance
. 122
7.1.11
Measurement of Effective Masses with Cyclotron
Resonance
. 123
7.1.12
The Conduction Band at Higher Energies
. 125
7.1.13
The Momentum Effective Mass
. 125
7.1.14
The Effective Mass at Higher Energies
. 126
7.2
The Band Gap
. 128
7.2.1
Band Gap Variation
. 128
xiv
Contents
7.2.2
Band Gap Bowing
. 129
7.2.3
Band Gap Dependence on Temperature and Pressure
. . . 131
7.2.4
Band Gap Narrowing with Heavy Doping
. 135
7.2.5
Shift of the Fermi Level into the Band at High Doping
Densities
. 137
7.3
Bands in Superlattices
. 138
7.3.1
Mini-bands
. 139
7.3.2
Bands in Ultrathin Superlattices
. 142
7.3.3
Density of States in Mini-bands
. 144
7.3.4
Two-, One-, Zero-Dimensional Quantum Well
Structures
. 144
7.3.5
Electronic States in Microcrystallites
. 145
7.4
Bands in Amorphous Semiconductors
. 146
7.5
Supercomputer
. 147
8
Equilibrium Statistics of Semiconductors
. 149
8.1
The Intrinsic Semiconductor
. 149
8.1.1
Electron and Hole Densities in Equilibrium
. 150
8.1.2
Level Distribution Near the Band Edge
. 150
8.2
Statistical Distribution Functions
. 153
9
Shallow Level Centers
. 155
9.1
Hydrogen-Like Defects
. 156
9.2
Charge Density Distribution, ESR, and ENDOR
. 159
9.3
The Chemical Identity
. 159
9.4
Hydrogen-Like Donors in Indirect Band-Gap Semiconductors
. . . 161
9.5
Hydrogen-Like Acceptors
. 163
9.6
Bound and Resonant States
. 165
9.6.1
Shallow Defects in Compound Semiconductors
. 166
9.6.2
Higher Charged Coulomb-Attractive Centers
. 167
9.6.3
Over-Charged Donors or Acceptors
. 168
9.6.4
Metal-Ion Interstitials
. 169
10
Deep Level Centers
. 171
10.1
Mathematical Models of Deep Level Centers
. 172
10.1.1
Square Well Potential
. 172
10.2
Coulomb Tail and Deep Center Potential
. 173
10.3
Theoretical Methods to Analyze Defect Centers
. 175
10.3.1
Perturbative Methods
. 176
10.3.2
Cluster Calculation
. 176
10.3.3
Supercell
Technique
. 176
10.3.4
Green's Function Technique
. 177
10.3.5
Semiempirical Tight-Binding Approximation
. 177
10.3.6
Supercomputer Use
. 177
10.3.7
The Jahn-Teiler Effect
. 178
10.3.8
Crystal Field Theory
. 178
Contents xv
10.4
Examples of
Deep Centers. 180
10.4.1
Vacancies in Alkali
Halides
. 180
10.4.2
F-Centers
. 180
10.4.3
Other Centers in Alkali Halides
. 183
10.4.4
Vacancies in Covalent Crystals
. 183
10.4.5
Self-interstitials
. 184
10.4.6
Antisite
Defects
. 185
10.4.7
Hydrogen in Silicon
. 185
10.4.8
Substitutionał
Defects Replacing a Vacancy
. 186
10.4.9
Impurity and Site Symmetry
. 187
10.4.10
Isoelectronic Defects
. 188
10.4.11
Chalcogens in Si
. 189
10.4.12
Oxygen in GaP
. 190
10.4.13
Other Deep Defect Centers (EL2, DX)
. 191
10.5
Negative-C/
Centers
. 192
10.5.1
Negative-
U
in Chalcogenide Glasses
. 193
10.6
Shallow/Deep Center Instabilities
. 193
10.6.1
Metastable Lattice Relaxation
. 194
10.6.2
Transition Metal Impurities
. 194
10.6.3
Site Character
. 195
10.6.4
Charge Character
. 195
10.6.5
The Energy of Levels
. 198
10.6.6
The Level Spectrum of Various Point Defects
. 203
11
Defect Associates
. 207
11.1
Defect Center Pairs
. 207
11.1.1
Donor-Acceptor Pairs
. 207
11.1.2
Chalcogen Pairs in Si
. 210
11.1.3
Hydrogen Pairing in Silicon
. 210
11.2
Triple and Higher Defect Centers
. 211
11.3
Defect Clusters Due to Radiation Damage
. 213
12
Defect States and Band States
. 217
12.1
Band Tailing
. 217
12.2
Disorder Effects in Semiconductor Alloys
. 221
12.3
Impurity Influence, Fundamental Absorption
. 222
12.4
The Burstein-Moss Effect
. 223
13
Defects in Amorphous Semiconductors
. 227
13.1
Band Tails
. 227
13.2
Classes of Amorphous Semiconductors
. 229
13.3
Defect Types in Amorphous Semiconductors
. 229
13.3.1
Strain-Related Defects
. 230
13.3.2
Under-and Over-Coordinated Defects
. 231
13.3.3
Dangling and Floating Bonds
. 231
13.3.4
Deviation from Optimal Bonding Configuration
. 231
xvi Contents
13.3.5 Doping in Semiconducting
Glasses
. 233
13.4
Microcrystalline Boundaries and Voids
. 233
13.4.1
Recrystallization of Amorphous
Si
. 234
13.5
Spin Density of Defects
. 234
13.6
Defect Spectrum in Amorphous Semiconductors
. 234
13.6.1
The Anderson Model
. 235
13.7
Band Tails and Localization
. 238
14
Defects in Superlattices
.239
14.1
Defects in Compositional Superlattices
.239
14.1.1
Isolated Lattice Defects in Superlattices
.240
14.1.2
¿-Function Doping
.241
14.2
Strained-Layer Superlattices
.241
14.2.1
Superlattice-Induced Phase Changes
.242
14.3
Doping Superlattices
.244
15
Carriers and Their Motion
.247
15.1
Carriers Within Their Bands
. 247
15.2
Sign Conventions
. 249
15.3
Electronic Conductivity
. 250
15.4
Joule's Heating
. 251
15.5
Electron Mobility
. 251
15.6
Gas-Kinetic Model for Electron Scattering
. 252
15.6.1
Electron and Hole Drift Current
. 253
15.7
Momentum and Energy Relaxation
. 253
15.7.1
The Average Momentum Relaxation Time
.253
15.7.2
The Average Energy Relaxation Time
.255
15.8
The Mean Free Path of Carriers
.256
15.9
Phonon and Electron Drag
.256
15.10
The Electric Field
.257
15.11
Fields in Graded Band-Gap Semiconductors
.259
15.12
Diffusion Currents
.260
15.13
Maximum Diffusion Currents
.262
15.14
Einstein Relation
.262
15.15
The Electrochemical Fields
.263
15.15.1
Quasi-Fermi Level
.264
15.16
External and Built-in Fields
.265
15.16.1
Penalties for a Simple Transport Model
.266
15.17
Distributions in Built-in or External Fields
.267
15.18
Mobilities in Built-in or External Fields
.268
15.19
Summary: Potential Gradients and Currents
.269
16
Carrier Transport
.271
16.1
Boltzmann Equation
.271
16.2
Transport Equations
.273
16.3
Thermoelectric Effects
.275
Contents xvii
16.3.1
The Inhomogeneous Thermoelectric
Effect
. 278
16.3.2
The Isothermal
Hall Effect
. 278
16.3.3
Transverse Magneto-resistance
. 280
16.3.4
Geometry Factors in Galvanomagnetic Effects
. 283
16.3.5
Cyclotron Resonance
. 284
16.4
Carrier Quantum Effects in Magnetic Field
. 284
16.4.1
Quasi-free Carriers in a Strong Magnetic Field
. 284
16.5
Diamagnetic and Paramagnetic Electron Resonance
. 286
16.6
Density of States in Magnetic Fields
. 288
16.6.1 DeHaas-Type
Effects
. 289
16.7
Magneto-phonon Effects
. 289
16.8
The Quantized Hall Effect
. 289
16.8.1
Fractional Quantum Hall Effect
. 292
17
Carrier Scattering at Low Fields
. 295
17.1
Types of Scattering Centers
. 296
17.2
Intravalley Scattering
. 297
17.3
Electron Scattering with Phonons
. 297
17.4
Elastic and Inelastic Scattering
. 298
17.5
Phonon Generation and Annihilation
. 299
17.6
Longitudinal Acoustic Phonon Scattering
. 300
17.6.1
Acoustic Phonon Scattering with Piezoelectric
Interaction
. 302
17.7
Optical Phonon Scattering in
Nonpolar
Compounds
. 303
17.7.1
Optical Phonon Scattering in Polar Semiconductors
. 305
17.7.2
Scattering by Intrinsic Point Defects
. 307
17.8
Scattering by Neutral Lattice Defects
. 307
17.9
Scattering on Ionic Defects
. 308
17.10
Coulomb Scattering in
Anisotropie
Semiconductors
. 312
17.10.1
Quantum Corrections for Ion Scattering
. 312
17.11
Carrier-Carrier Scattering
. 313
18
Carrier Mobility Influenced by Larger Defects
. 315
18.1
Scattering at Dislocations
. 315
18.2
Scattering at Defect Clusters
. 316
18.3
Carrier Influence of Microcry
stallite
Boundaries
. 316
18.4
Influence of External Surfaces
. 318
18.5
Influence of Metal-Semiconductor. Boundaries
. 319
19
Electron at High Fields
. 321
19.1
Electron Tunneling
. 321
19.1-1
Tunneling Through Rectangular Barrier
. 321
19.1.2
Tunneling Through Triangular or Parabolic Barrier
. 323
19.1.3
Band-to-Band Tunneling
. 324
19.2
Tunneling in a Three-Dimensional Lattice
. 325
19.3
Tunneling Currents
. 325
xviii Contents
19.4
Tunneling
Spectroscopy. 327
19.5
Tunneling with Phonon Assistance
. 329
19.5.1
Tunneling with Trap Assistance
. 330
19.6
Tunneling with Photon Assistance (Franz-Keldysh Effect)
. 330
19.6.1
Influence of the Electric Field on Defect Levels
. 336
19.7
Field Effects in Superlattices
. 336
19.8
lonization via Energetic Particles
. 337
Part
Ш
Photons
20
Basics of Optical Spectroscopy
. 341
20.1
Phenomenological Theory
. 342
20.2
Reflection, Transmission, and Absorption
. 342
20.2.1
Nonabsorbing Dielectrics
. 343
20.3
Semiconductors with Optical Absorption
. 344
20.4
The Complex Electrical Conductivity
. 348
20.4.1
Dielectric Polarization
. 349
20.5
Measurement of Optical Parameters
. 349
20.6
Reflectance and Transmissivity in Dielectrics
. 350
20.7
Reflectance and Transmittance in Semiconductors
. 353
20.8
Modulation Spectroscopy
. 358
20.9
Relation to Band-to-Band Transitions
. 359
21
Photon Interaction with Carriers
. 361
21.1
Carrier Generation
. 361
21.2
Photo-Ionization Cross Section
. 363
21.3
Photo-Ionization Cross Section Measurement
. 364
21.4
Reaction-Kinetics Evaluation
. 365
22
Carrier Recombination
. 367
22.1
Nonradiative Recombination
. 368
22.2
Capture Cross Section
. 368
22.2.1
Recombination at Coulomb-Attractive Centers
. 369
22.2.2
Geminate Recombination
. 371
22.3
Recombination in Amorphous Semiconductors
. 372
22.4
Nonradiative Recombination at Deep Centers
. 372
22.5
Competition Between Radiative and Nonradiative
Recombination
. 374
22.5.1
Nonradiative Multiphonon Recombination
. 376
22.6
Auger Recombination
. 376
22.7
Plasmon-Induced Recombination
. 380
22.8
Statistics of Recombination
. 380
22.9
Trapping or Recombination
. 380
22.10
Electron and Hole Traps
. 380
22.10.1
Recombination Centers
. 381
22.11
Demarcation Lines
. 381
22.12
Thermal Equilibrium and Steady State
. 383
Contents xix
22.12.1
Thermal
Equilibrium
.383
22.12.2
Steady State
.383
22.13
The Hall-Shockley-Read Center
. . .
ч
.384
23
Kinetics of Electron Distribution in Defects
.387
23.1
Changes of Optical Excitation
.388
232
Rise and Decay of Photoconductivity
.388
23.2.1
Rise and Decay of Intrinsic Photoconductivity
. 389
23.2.2
The Method of Controlled Excitation
. 393
23.2.3
Photoconduction
Time Constants
. 394
23.2.4
Small Sinusoidal Excitation
. 395
23.3
Kinetics Influenced by Trap Distribution
. 396
23.3.1
Ultrafast Photodetectors
. 397
23.4
Competing Excitation Processes
. 398
23.5
Optical Quenching
. 398
23.6
Orientation Relaxation
. 400
23.7
Changes in Thermal Ionization
. 400
23.7.1
Thermally Stimulated Luminescence
. 400
23.8
Thermally Stimulated Currents
. 403
23.9
Changes in Field Ionization
. 405
23.9.1
Field-Stimulated Current Curves
. 405
24
Photoconductivity
.407
24.1
Intrinsic Photoconductivity
.407
24.2
Extrinsic Photoconductivity
.408
24.3
Influence of Traps on Photoconductivity
.409
24.3.1
Shallow Traps
.410
24.3.2
Trap Distribution
.411
24.4
Recombination Centers in Photoconductors
.412
24.5
Thermal Ionization of Activators
.413
24.6
Sensitization of Photoconductors
.415
24.6.1
Superlinearity of Photoconductivity
.416
24.7
Photosensitivity and the Gain Factor
.416
24.8
Photodetector Figures of Merit
.418
24.8.1
Responsivity
. 418
24.8.2
Detectivity
. 419
24.9
Frequency Response
. 420
24.10
Current Continuity
. 420
24.10.1
Current Continuity in Ambipolar Photoconductors
. 421
24.11
Persistent Photoconductivity
. 423
Part IV Photo
voltaice
25
Creation of Space-Charge Regions in Solids
.427
25.1
One Carrier Abrupt Step-Junction
.429
25.1.1
Electron Density, Space Charge, and Field Distribution
. . 431
25.1.2
Electrode-Surface Charges
.431
xx Contents
25.1.3
Field
Distribution. 432
25.1.4
Electrostatic
and
Fermi
Potentials. 432
25.1.5
Currents
. 436
25.2
External and Built-in Fields
. 437
25.2.1
Penalties for a Simple Transport Model
. 438
25.2.2
Built-in or External Fields
. 439
25.2.3
Distributions in Built-in or External Fields
. 439
25.2.4
Mobilities in Built-in or External Fields
. 440
25.3
Current Rectification
. 441
25.3.1
Dependence on the Doping Step-Size
. 442
25.4
Space-Charge Limited Current
. 444
26
The Schottky Barrier
. 447
26.1
The Classical Schottky Barrier
. 447
26.1.1
Schottky Approximation: Field and Potential
Distributions
. 449
26.2
Zero Current Solution of the Electron Distribution
. 452
26.2.1
Diffusion Potential, Junction Field
. 452
26.3
Debye Length and Barrier Width
. 454
26.3.1
The Accuracy of the Schottky Approximation
. 455
26.3.2
Non-vanishing Currents
. 455
26.3.3
The Electron Density Distribution
. 457
26.4
Current—Voltage Characteristics
. 461
26.5
Modified Schottky Barrier
. 462
26.5.1
The Schottky Barrier with Current-Dependent Interface
Density
. 463
26.5.2
Metal/Semiconductor Boundary Condition
. 463
26.5.3
Current—Voltage Characteristic in a Modified Schottky
Barrier
. 465
26.5.4
The Shape Factor
. 467
26.5.5
Modified Boltzmann Range
. 467
26.5.6
DRO-Range
. 468
26.5.7
Electrostatic and Electrochemical Potentials in a Schottky
Barrier
. 470
27
Minority Carriers in Barriers
. 473
27.1
Carrier Generation and Recombination
. 474
27.1.1
Thermal Excitation
. 475
27.1.2
Optical Excitation
. 476
27.1.3
Field Ionization
. 478
27.2
Trapping and Recombination
. 480
27.2.1
Electron and Hole Traps
.
48Ó
27.2.2
Recombination Centers
. 481
27.3
Quasi-Fermi Levels, Demarcation Lines
. 481
27.3.1
Thermal Equilibrium and Steady State
. 483
27.3.2
Zero Net-Current, Thermal Equilibrium
. 484
Contents xxi
27.3.3
Non-vanishing Current, Steady State
.484
27.3.4
Current Continuity
.486
27.4
Carrier Lifetimes
.488
27.4.1
Large Generation, Optical Excitation
.491
28
Minority Carrier Currents
.493
28.1
Minority Carrier Currents in the Bulk
.494
28.1.1
Thermal Excitation GR-Currents
. 495
28.1.2
The Diffusion Equation and Its Solution
. 495
28.1.3
Maximum GR-Currents
. 498
28.1.4
Pure Generation or Recombination Currents
. 499
28.2
GR-Current with Surface Recombination
. 499
28.2.1
Thermal GR-Current with Surface Recombination
.500
28.2.2
The Effective Diffusion Velocity
.502
28.2.3
Optical Excitation GR-Currents with Surface
Recombination
.503
28.2.4
Optical Excitation GR-Currents with Recombination
at Right and Barrier at Left
. 503
28.2.5
Currents in Short and Long Devices
. 506
28.2.6
Collection Efficiency of Minority Carriers
. 507
28.2.7
Effective Diffusion Velocity for Optical Excitation
. 509
28.2.8
Optical vs. Thermal Carrier Generation
. 509
28.3
Drift-Assisted GR-Currents
. 509
28.3.1
Field-Influence in the Bulk
. 510
28.3.2
Analytical Solution of Diffusion with Constant Field
. 510
28.3.3
Drift-Assisted GR-Currents Without Surface
Recombination at Right Electrode
. 511
28.3.4
Total Drift Assisted Minority Carrier Current
. 513
28.3.5
Justification for the Separation of Injection and
Generation Currents
. 515
29
Schottky Barrier in Two-Carrier Model
.517
29.1
Electron and Hole Currents in Barriers
.517
29.1.1
Divergence-Free Electron and Hole Currents
.518
29.1.2
GR-Currents in Schottky Barrier Devices
.519
29.1.3
GR-Currents in the Space-Charge Regions
.519
29.1.4
Field Influence in the Barrier Region
.522
29.1.5
The Definition of the Carrier Density at the Splicing
Boundary
.523
29.1.6
Minority Carrier Density at the Metal/Semiconductor
Interface
.524
29.2
Schottky Barrier with Two Carriers
.525
29.2.1
The Governing Set of Equations
. 525
29.2.2
Example Set of Parameters
. 526
29.2.3
Boundary Conditions
. 527
29.2.4
Example Solutions for a Thin Device
. 528
xxii Contents
29.2.5
Carrier
Distributions
. 530
29.2.6
Boltzmann
Region
for Minority Carriers
. 530
29.2.7
Demarcation Lines and Shockley-Franck-Read
Recombination Centers
. 533
29.2.8
Currents in the Schottky Barrier
. 533
29.2.9
Quasi-Fermi Levels and Demarcation Lines
. 534
29.2.10
Electron and Hole Density Crossings
. 536
29.2.11
Carrier Inversion Layer with Consequences on the Space
Charge
. 537
29.3
Schottky Barrier Device
. 538
29.3.1
Medium Width Device, Boundary Conditions
. 538
29.3.2
General Solution Behavior
. 538
29.3.3
Schottky Barrier in Wider Device and Violation
of the
Roosbroek
Approximation
. 539
29.3.4
The Relative Contribution of Divergence-Free and
GR-Currents in Schottky Barrier Devices
. 540
30
pn-Homojunctioiis
. 543
30.1
Simplified pn -Junction Model
. 544
30.1.1
Basic Features of the Simplified Model
. 544
30.1.2
Simplified Junction Model in Steady State
. 546
30.1.3
Junction Capacitance
. 547
30.1.4
The Current—Voltage Characteristic of the Simplified
Junction
. 548
30.1.5
Contribution of the GR-Currents
. 549
30.1.6
The Diode Quality Factor
. 550
30.1.7
Relevance to Actual pn-Junctions
. 551
30.2
Abrupt pn-Junction in Ge
. 551
30.2.1
Governing Set of Equations and Example Parameters
. 551
30.2.2
Solution Curves for Thin Germanium
ри
-Junction
. 552
30.2.3
The Position of the pn -Junction
. 553
30.2.4
Junction Field and Potential Distribution
. 553
30.2.5
Quasi-Fermi Level and Current Distributions in the
pn-Junction
. 555
30.2.6
Boltzmann-, DRCK
and DO-Ranges
. 556
30.2.7
Carrier Heating in
рл
-Junctions
.
557
30.2.8
GR-Currents and Divergence-Free Currents
. 558
30.2.9
The Current-Voltage Characteristic
. 560
30.3
Thick pn -Junction Device (Ge)
. 561
30.3.1
Changes in Current Contributions with Device Thicknes
. 561
30.3.2
The Quasi-Fermi Levels of the Thicker Device
. 563
30.4
The Si-Homojunction
. 565
30.4.1
The Current-Voltage Characteristics
. 566
30.5
More Complex Homojunctions
. 567
30.5.1
Linearly Doped Junction
. 567
Contents
xxiii
30.5.2
High Minority Carrier Injection
. 568
30.5.3
Series Resistance Limitation
. 569
30.5.4
Position-Dependent Material Parameters
. 569
31
The Photovoltaic Effect
. 571
31.1
Carrier Generation and Recombination with Light
. 572
31.1.1
Photoconductors
. 573
31.1.2
Photo-emf and Photocurrents
. 574
31.1.3
Quasi-equilibrium Approximation
. 576
31.2
Reaction Kinetic, Balance
. 576
31.2.1
Trap-Controlled Carrier Densities
. 579
31.3
Simple Model of the
Photodiode
. 580
31.3.1
Derived
Photodiode
Parameters
. 583
31.3.2
Resistive Network Influence on the Diode Characteristics
. 585
31.4
Device Cooling when Electric Energy is Extracted from Solar
Cells Exited with Light
. 587
31.4.1
Detailed Energy Balance
. 587
32
The
ρ η
-Junction with Light
. 591
32.1
Open Circuit Conditions
. 592
32.1.1
Thin, Symmetric Si-Diode with Abrupt Junction
. 592
32.1.2
Current Distribution in a Symmetric pn-Junction
. 592
32.1.3
Solution Curves for Symmetric
ри-
Junction
. 595
32.1.4
Quasi-Fermi Levels and V^
. 596
32.1.5
Influence of Device Thickness
. 598
32.1.6
Influence of Surface Recombination
. 599
32.1.7
Influence of Recombination Center Density
. 599
32.1.8
Influence of the Generation Rate
. 601
32.1.9
Influence of the Doping Density
. 602
32.1.10
Parameter Dependence of VOc for Insufficient Minority
Carrier Supply
. 603
32.1.11
Influence of the Energy of the Recombination Center
. . . 604
32.2
Thin Asymmetric Si Diodes with Abrupt Junction
. 606
32.2.1
Recombination Through Charged Recombination Centers
. 606
32.2.2
Inhomogeneous Optical Excitation
. 608
32.2.3
Optical Excitation Only in a Thin Front Layer
of the Device
. 608
32.2.4
Thin Asymmetric Junction Design
. 610
32.2.5
Asymmetric Bulk Thickness
. 611
32.2.6
Asymmetric Recombination
. 611
32.2.7
Asymmetric Generation
. 612
32.2.8
Asymmetric Doping
. 614
32.2.9
Thick Asymmetric Devices, Si Solar Cells
. 615
32.3
Non-vanishing Bias
. 618
32.3.1
Thin Symmetrical pn -Junction Device with Bias
. 619
32.3.2
Thin Asymmetric Si pn -Junction Device with Bias
. 621
32.3.3
Si-Solar Cell with
Non-
vanishing Bias
. 621
XXIV
Contents
33
The Heterojunction with Light
. 625
33.1
The C^S/CdS Solar Cell
. 627
33.1.1
The Current-Voltage Characteristics
. 628
33.1.2
Space Charge Effects in the Heterojunction
. 630
ЗЗЛ.З
Influence of Electron Traps in CdS
. 630
33.1.4
Influence of a Compensated Layer near
the
Hetero-Interface
. 633
33.1.5
Influence of a Field-Induced Depletion of Hole Traps
. . . 634
33.1.6
Influence of Field Quenching
. 635
33.1.7
Kinetic Effects of Solar Cell Characteristics
. 637
33.1.8
Voltage Drop Kinetics Method
. 638
33.1.9
Influence of Interface Recombination
. 641
33.1.10
Boundary Condition at the Interface
. 642
33.1.11
Information from the Exponential
А
-Factor
.
642
33.2
Lessons Learned from the CdS/Cu2S Solar Cell
. 646
34
The CdS/CdTe Solar Cell
.649
34.1
Production Methods of the CdS/CdTe Cell
.649
34.1.1
Physical Properties of the CdS/CdTe Solar Cell
. 652
34.1.2
Crystallography
. 652
34.L3 Defect Chemistry
. 652
34.1.4
Processing and Performance
. 653
34.2
Electrical Properties of the CdS/CdTe Solar Cell
. 654
34.2.1
Cell Degradation
. 656
35
CdS/CdTe Analysis and Modeling
.659
35.1
Simple Mathematical Models
.660
35.2
Model Application
.661
36
Basic Physics Discussion of CdS/CdTe
.665
36.1
Introduction
.666
36.2
Field Distribution in the CdS Side of the Junction
.666
36.2.1
High-Field Domain
.668
36.2.2
Domain Analysis
.668
36.2.3
Direct Experimental Evidence of the High-Field
Domain
.671
36.2.4
Relevance of the High-Field Domain
to the
Hetero-
Junction
. 671
36.2.5
Why is Only CdS such an Advantageous Cover-Layer?
. . 672
36.3
Consequences of the Field-Quenching for the
Interband
Connection
. 672
36.4
Summary and Conclusions
. 673
37
Stationary High-Field Domains as Tools
.677
37.1
Introduction
.678
37.2
Mathematical Analysis (FieldHjf-Direction-Method)
.679
Contents xxv
37.3 Determination
of the Work Function as Function of the Optical
Excitation
. 681
37.4
Determination of the Field Dependence of the Hall Mobility
. . 681
37.5
Stationary Domains Improve Efficiencies of Solar Cells
. 681
37.5.1
Virtual Cathode
. 682
37.6
Anode-Adjacent Domain at Higher Fields
. 683
37.7
Transition Between the Two Types of Stationary Domains
. 686
37.7.1
Stabilizing by the Domain in the Pre-breakdown Range
. . 687
37.8
Conditions for Stationary High-Field Domains to Occur
. 687
37.9
Nonstationary (Moving) High-Field Domains
. 688
37.10
Summary
. 689
38
Commercial Use of CdS/CdTe
. 691
38.1
History of the CdS/CdTe Solar Cell
. 691
38.2
Why is Cadmium
Sulfide
the Only Compound?
. 693
38.3
Economical Aspects of Thin-Film Solar Cells
. 695
38.4
Cd Toxicity
and
Te
Supply
. 696
38.5
Larger Recent CdS/CdTe Panel Deployments
. 697
39
The CdS/CulnSez Solar
СеП
. 699
39.1
Introduction
. 699
39.2
History
. 699
39.3
Material Properties
. 700
39.4
Electronic Properties
. 701
40
The CdS/Cu(InGa)Se2 Solar Cells
. 703
40.1
Introduction
. 703
40.2
History
. 703
40.3
Material Properties
. 704
40.3.1
Structure and Composition
. 704
40.3.2
Optical Properties and Electronic Structure
. 705
40.3.3
Electronic Properties
. 705
40.3.4
Surface and Grain Boundaries
. 706
40.4
Deposition Methods
. 707
40.4.1
Substrate Effects
. 707
40.4.2
Back Contact
. 708
40.4.3
Deposition Methods
. 708
40.4.4
Precursor Reaction Processes
. 709
40.5
Junction and Device Formation Using CdS
. 710
40.5.1
Interface Effects
. 711
40.5.2
Transparent Contacts
. 711
40.5.3
High-Resistance Buffer-Layers
. 712
40.5.4
Device Completion
. 712
40.6
Device Operation
. 713
40.6.1
Light-Generated Current
. 713
40.6.2
Recombination
. 715
xxvj Contents
40.6.3
The Cu(InGa)Se2/CdS Interface
.717
40.6.4
Wide and Graded Band-Gap Solar Cells
.718
41
Amorphous Silicon Solar Cells
.721
41.1
History of Amorphous Silicon Solar Cells
.721
41.2
Designs of Modern
α
-SirH
Solar Cells
.722
41.3
a
-ЅШ
-Related
Solar Cells
.723
41.3.1
Multijunction Solar Cells
. 723
41.3.2
a -Si: H
Followed by a Micro-crystalline Si Layer
. 723
41.3.3
Staebler-Wronski Effect
. 723
41.4
Atomic and Electronic Structure of or
-Si: H
. 724
41.4.1
Atomic Structure
. 724
41.4.2
Defects and Metastability
. 725
41.4.3
Electronic Density-of-States
. 726
41.4.4
Band Tails, Band Edges, and Band-Gaps
. 726
41.4.5
Defects and Gap States
. 727
41.4.6
Phosphorus Doping Puzzle
. 727
41.4-7
Alloying and Optical Properties
. 728
41.4.8
Nanocrystalline Silicon
. 729
41.5
Depositing Amorphous Silicon
. 729
41.5.1
Deposition Techniques
.729
41.5.2
RF Plasma-Enhanced Chemical Vapor Deposition
(RF-PECVD)at
13.56
MHz
.729
41.5.3
PECVD at Different Frequencies
.730
41.5.4
Hot-Wire Chemical Vapor Deposition
.731
41.5.5
Other Deposition Methods
.731
41.5.6
Hydrogen Dilution
.732
41.5.7
Alloys and Doping
.732
41.6
Theory of the a -Si pi
η
Cells
.733
41.6.1
Electronic Structure of a pi
η
cell
. 733
41.6.2
Influence of Thickness on Power Generation
. 733
41.6.3
Optical Design of a-Si:H and nc-Si.H Solar Cells
. 734
41.7
Multijunction Solar Cells
. 736
41.7.1
Advantages of Multi-junction Solar Cells
.736
41.7.2
Alloys to Vary the Band Gap
.737
41.7.3
Bandgap
Grading ofa-SiGe ¿-Layers and of a-SiC
. 737
41.7.4
cr-Si/a-SiGe Tandem and a-Si/a-SiGe/a-SiGe
Triple-Junction Solar Cells
.738
Appendix A Important Formulae
.739
A.I General Formulae
.739
A.2 Characteristic Lengths in Solids
.740
A.3 Effective Masses
.740
A.4 Phonons,
IR
Dispersion, and Thermal Properties
.741
A.5 Electron-Lattice Interaction
.742
A.6 Optical Properties
.743
Contents xxvii
A.7 Quasi-hydrogen and Deep Well States . 744
A.8
Equilibrium Densities, Energies, Velocities
. 745
A.9 Transport Properties
. 746
A.
10
Characteristic Times and Frequencies
. 748
A.
11
Photoconductivity
. 749
A.12 Field Effects
. 750
A.13 Tables of Constants
. 751
Bibliography
. 755
Index
. 869 |
any_adam_object | 1 |
author | Böer, Karl W. 1926-2018 |
author_GND | (DE-588)121969657 |
author_facet | Böer, Karl W. 1926-2018 |
author_role | aut |
author_sort | Böer, Karl W. 1926-2018 |
author_variant | k w b kw kwb |
building | Verbundindex |
bvnumber | BV041789168 |
classification_rvk | ZP 3730 |
ctrlnum | (OCoLC)881302769 (DE-599)DNB1030437297 |
dewey-full | 537.6226 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.6226 |
dewey-search | 537.6226 |
dewey-sort | 3537.6226 |
dewey-tens | 530 - Physics |
discipline | Maschinenbau / Maschinenwesen Physik Energietechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV041789168</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140919</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140410s2013 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1030437297</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">364236747X</subfield><subfield code="9">3-642-36747-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642367472</subfield><subfield code="9">978-3-642-36747-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)881302769</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1030437297</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537.6226</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3730</subfield><subfield code="0">(DE-625)157971:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Böer, Karl W.</subfield><subfield code="d">1926-2018</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121969657</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of the physics of thin-film solar cells</subfield><subfield code="c">Karl W. Böer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XL, 882 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dünnschichtsolarzelle</subfield><subfield code="0">(DE-588)4150833-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbleiterphysik</subfield><subfield code="0">(DE-588)4113829-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dünnschichtsolarzelle</subfield><subfield code="0">(DE-588)4150833-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Halbleiterphysik</subfield><subfield code="0">(DE-588)4113829-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-36748-9</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4247938&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027234831&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027234831</subfield></datafield></record></collection> |
id | DE-604.BV041789168 |
illustrated | Illustrated |
indexdate | 2024-09-10T01:11:56Z |
institution | BVB |
isbn | 364236747X 9783642367472 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027234831 |
oclc_num | 881302769 |
open_access_boolean | |
owner | DE-703 DE-11 DE-29T |
owner_facet | DE-703 DE-11 DE-29T |
physical | XL, 882 S. graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer |
record_format | marc |
spelling | Böer, Karl W. 1926-2018 Verfasser (DE-588)121969657 aut Handbook of the physics of thin-film solar cells Karl W. Böer Berlin [u.a.] Springer 2013 XL, 882 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Dünnschichtsolarzelle (DE-588)4150833-6 gnd rswk-swf Halbleiterphysik (DE-588)4113829-6 gnd rswk-swf Dünnschichtsolarzelle (DE-588)4150833-6 s Halbleiterphysik (DE-588)4113829-6 s DE-604 Erscheint auch als Online-Ausgabe 978-3-642-36748-9 http://deposit.dnb.de/cgi-bin/dokserv?id=4247938&prov=M&dok_var=1&dok_ext=htm Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027234831&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Böer, Karl W. 1926-2018 Handbook of the physics of thin-film solar cells Dünnschichtsolarzelle (DE-588)4150833-6 gnd Halbleiterphysik (DE-588)4113829-6 gnd |
subject_GND | (DE-588)4150833-6 (DE-588)4113829-6 |
title | Handbook of the physics of thin-film solar cells |
title_auth | Handbook of the physics of thin-film solar cells |
title_exact_search | Handbook of the physics of thin-film solar cells |
title_full | Handbook of the physics of thin-film solar cells Karl W. Böer |
title_fullStr | Handbook of the physics of thin-film solar cells Karl W. Böer |
title_full_unstemmed | Handbook of the physics of thin-film solar cells Karl W. Böer |
title_short | Handbook of the physics of thin-film solar cells |
title_sort | handbook of the physics of thin film solar cells |
topic | Dünnschichtsolarzelle (DE-588)4150833-6 gnd Halbleiterphysik (DE-588)4113829-6 gnd |
topic_facet | Dünnschichtsolarzelle Halbleiterphysik |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=4247938&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027234831&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT boerkarlw handbookofthephysicsofthinfilmsolarcells |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis