Real analysis: theory of measure and integration
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore [u.a.]
World Scientific
2014
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Erg. u.d.T.: Yeh, James: Problems and proofs in real analysis. - 1. Aufl. u.d.T.: Yeh, James: Lectures on real analysis |
Beschreibung: | XXIII, 815 S. |
ISBN: | 9789814578547 9789814578530 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041787808 | ||
003 | DE-604 | ||
005 | 20160404 | ||
007 | t | ||
008 | 140409s2014 |||| 00||| eng d | ||
020 | |a 9789814578547 |c pbk |9 978-981-4578-54-7 | ||
020 | |a 9789814578530 |9 978-981-4578-53-0 | ||
035 | |a (OCoLC)890066796 | ||
035 | |a (DE-599)OBVAC11338333 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-824 |a DE-19 |a DE-739 |a DE-11 |a DE-91G | ||
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
084 | |a SK 420 |0 (DE-625)143238: |2 rvk | ||
084 | |a MAT 280f |2 stub | ||
100 | 1 | |a Yeh, James |e Verfasser |4 aut | |
245 | 1 | 0 | |a Real analysis |b theory of measure and integration |c J. Yeh |
250 | |a 3. ed. | ||
264 | 1 | |a Singapore [u.a.] |b World Scientific |c 2014 | |
300 | |a XXIII, 815 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Erg. u.d.T.: Yeh, James: Problems and proofs in real analysis. - 1. Aufl. u.d.T.: Yeh, James: Lectures on real analysis | ||
650 | 0 | 7 | |a Reelle Analysis |0 (DE-588)4627581-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrationstheorie |0 (DE-588)4138369-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Reelle Analysis |0 (DE-588)4627581-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 1 | 1 | |a Integrationstheorie |0 (DE-588)4138369-2 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027233508&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027233508 |
Datensatz im Suchindex
_version_ | 1804152103063519232 |
---|---|
adam_text | Titel: Real analysis
Autor: Yeh, James
Jahr: 2014
Contents
Preface to the First Edition xiii
Preface to the Second Edition xvii
Preface to the Third Edition xix
List of Notations xxi
1 Measure Spaces 1
§0 Introduction......................................................................1
§ 1 Measure on a ít-algebra of Sets..................................................3
[I] er-algebra of Sets..............................................................3
[II] Limits of Sequences of Sets..................................................4
[HI] Generation of cr-algebras....................................................6
[IV] Borei a-algebras............................................................9
[V] Measure on a cr-algebra......................................................11
[VI] Measures of a Sequence of Sets . .........................................14
[VÜ] Measurable Space and Measure Space....................................17
[Vili] Measurable Mapping......................................................19
[TX] Induction of Measure by Measurable Mapping...............22
§2 Outer Measures.................................29
[I] Construction of Measure by Means of Outer Measure...........29
[H] Regular Outer Measures ........................33
[HI] Metric Outer Measures ..........................35
[TV] Construction of Outer Measures......................38
§3 Lebesgue Measure on R..............................42
[I] Lebesgue Outer Measure on R........................42
[II] Some Properties of the Lebesgue Measure Space.............47
[III] Existence of Non-Lebesgue Measurable Sets...............51
[IV] Regularity of Lebesgue Outer Measure..................53
[V] Lebesgue Inner Measure on R.......................60
§4 Measurable Functions .............................72
[I] Measurability of Functions .........................72
[H] Operations with Measurable Functions ..................76
[III] Equality Almost Everywhere .......................81
[TV] Sequence of Measurable Functions....................82
vii
v¡¡¡ Contents
[V] Continuity and Borei and Lebesgue Measurability of Functions on R . . . 86
[VI] Cantor Ternary Set and Cantor-Lebesgue Function............ 88
§5 Completion of Measure Space .........................99
[I] Complete Extension and Completion of a Measure Space.........99
[II] Completion of the Borei Measure Space to the Lebesgue Measure Space 102
§6 Convergence a.e. and Convergence in Measure ................104
[I] Convergence a.e................................104
[II] Almost Uniform Convergence.......................108
[IE] Convergence in Measure .........................HI
[IV] Cauchy Sequences in Convergence in Measure..............116
[V] Approximation by Step Functions and Continuous Functions.......119
2 The Lebesgue Integral 131
§7 Integration of Bounded Functions on Sets of Finite Measure..........131
[I] Integration of Simple Functions.......................131
[II] Integration of Bounded Functions on Sets of Finite Measure.......136
[ED] Riemann Integrability...........................145
§8 Integration of Nonnegative Functions......................159
[I] Lebesgue Integral of Nonnegative Functions................159
[II] Monotone Convergence Theorem .....................161
[III] Approximation of the Integral by Truncation...............169
§9 Integration of Measurable Functions......................177
[I] Lebesgue Integral of Measurable Functions.................177
[H] Convergence Theorems...........................186
[ID] Convergence Theorems under Convergence in Measure .........190
[IV] Approximation of the Integral by Truncation...............191
[V] Translation and Linear Transformation of the Lebesgue Integral on R . . 196
[VI] Integration by Image Measure.......................201
§10 Signed Measures ................................212
[I] Signed Measure Spaces...........................212
[II] Decomposition of Signed Measures ....................218
[IB] Integration on a Signed Measure Space..................227
§11 Absolute Continuity of a Measure .......................235
[I] The Radon-Nikodym Derivative ......................235
[II] Absolute Continuity of a Signed Measure Relative to a Positive Measure 236
[III] Properties of the Radon-Nikodym Derivative...............247
3 Differentiation and Integration 257
§12 Monotone Functions and Functions of Bounded Variation...........257
[I] The Derivative................................257
[II] Differentiability of Monotone Functions..................263
[III] Functions of Bounded Variation......................274
§13 Absolutely Continuous Functions.......................283
[I] Absolute Continuity.............................283
[II] Banach-Zarecki Criterion for Absolute Continuity ............286
Contents ix
[III] Singular Functions.............................289
[TV] Indefinite Integrals.............................289
[V] Calculation of the Lebesgue Integral by Means of the Derivative.....300
[VI] Length of Rectifiable Curves .......................311
§14 Convex Functions ...............................323
[I] Continuity and Differentiability of a Convex Function...........323
[II] Monotonicity and Absolute Continuity of a Convex Function.......332
[OI] Jensen s Inequality.............................335
4 The Classical Banach Spaces 339
§15 Normed Linear Spaces.............................339
[I] Banach Spaces................................339
[H] Banach Spaces on R*............................342
[HI] The Space of Continuous Functions C([a, ¿]) ..............345
[TV] A Criterion for Completeness of a Normed Linear Space ........347
[V] Hilbert Spaces ...............................349
[VI] Bounded Linear Mappings of Normed Linear Spaces...........350
[VII] Baire Category Theorem.........................360
[Vili] Uniform Boundedness Theorems....................363
[TX] Open Mapping Theorem..........................366
[X] Hahn-Banach Extension Theorems.....................373
[XI] Semicontinuous Functions.........................386
§16 The LP Spaces .................................392
[I] The C Spaces for p e (0, oo) .......................392
[H] The Linear Spaces Cp for p 6 [1, oo)...................395
[HI] The Lp Spaces for p e [1, oo) ......................400
[IV] The Space L°°...............................410
[V] The Lp Spaces for p e (0,1)........................417
[VI] Extensions of Holder s Inequality.....................422
§17 Relation among the Lp Spaces.........................429
[I] The Modified Lp Norms for Lp Spaces with p e [1, oo] .........429
[0] Approximation by Continuous Functions .................431
[III] Lp Spaces with p e (0,1].........................435
[IV] The tp Spaces...............................439
§18 Bounded Linear Functional on the Lp Spaces ................448
[1] Bounded Linear Functionals Arising from Integration...........448
[H] Approximation by Simple Functions....................451
[IH] A Converse of Holder s Inequality.....................453
[TV] Riesz Representation Theorem on the Lp Spaces.............457
§ 19 Integration on Locally Compact Hausdorff Space...............465
[I] Continuous Functions on a Locally Compact Hausdorff Space ......465
[H] Borei and Radon Measures.........................470
[ID] Positive Linear Functionals on Cc(X)...................475
[IV] Approximation by Continuous Functions.................483
[V] Signed Radon Measures..........................487
x Contents
[VI] The Dual Space of C(X) .........................491
5 Extension of Additive Set Functions to Measures 501
§20 Extension of Additive Set Functions on an Algebra..............501
[I] Additive Set Function on an Algebra....................501
[II] Extension of an Additive Set Function on an Algebra to a Measure .... 506
[III] Regularity of an Outer Measure Derived from a Countably Additive Set
Function on an Algebra ..........................506
[IV] Uniqueness of Extension of a Countably Additive Set Function on
an Algebra to a Measure..........................509
[V] Approximation to a ct-algebra Generated by an Algebra .........511
[VI] Outer Measure Based on a Measure....................514
§21 Extension of Additive Set Functions on a Semialgebra ............516
[I] Semialgebras of Sets ............................516
[II] Additive Set Function on a Semialgebra..................518
[III] Outer Measures Based on Additive Set Functions on a Semialgebra . . . 522
§22 Lebesgue-Stieltjes Measure Spaces ......................525
[I] Lebesgue-Stieltjes Outer Measures.....................525
[II] Regularity of the Lebesgue-Stieltjes Outer Measures ...........529
[III] Absolute Continuity and Singularity of a Lebesgue-Stieltjes Measure . . 531
[IV] Decomposition of an Increasing Function.................539
§23 Product Measure Spaces............................548
[I] Existence and Uniqueness of Product Measure Spaces...........548
[II] Integration on Product Measure Space...................552
[III] Completion of Product Measure Space..................564
[IV] Convolution of Functions.........................568
[V] Some Related Theorems..........................608
6 Measure and Integration on the Euclidean Space 619
§24 Lebesgue Measure Space on the Euclidean Space...............619
[I] Lebesgue Outer Measure on the Euclidean Space .............619
[II] Regularity Properties of Lebesgue Measure Space on R .........624
[III] Approximation by Continuous Functions.................627
[IV] Lebesgue Measure Space on R as the Completion of a Product
Measure Space...............................631
[V] Translation of the Lebesgue Integral on IR ................632
[VI] Linear Transformation of the Lebesgue Integral on R ..........634
§25 Differentiation on the Euclidean Space.....................643
[I] The Lebesgue Differentiation Theorem on R ...............643
[II] Differentiation of Set Functions with Respect to the Lebesgue Measure . 655
[HI] Differentiation of the Indefinite Integral..................657
[IV] Density of Lebesgue Measurable Sets Relative to the Lebesgue Measure 658
[V] Signed Borei Measures on R .......................664
[VI] Differentiation of Borei Measures with Respect to the Lebesgue Measure 666
§26 Change of Variable of Integration on the Euclidean Space...........673
Contents xi
[I] Change of Variable of Integration by Differentiate Transformations . . . 673
[II] Spherical Coordinates in R ........................685
[HI] Integration by Image Measure on Spherical Surfaces...........691
7 Hausdorff Measures on the Euclidean Space 699
§27 Hausdorff Measures ..............................699
[I] Hausdorff Measures onR ..........................699
[II] Equivalent Definitions of Hausdorff Measure ...............704
[10] Regularity of Hausdorff Measure.....................710
[IV] Hausdorff Dimension...........................713
§28 Transformations of Hausdorff Measures....................718
[I] Hausdorff Measure of Transformed Sets ..................718
[11] 1-dimensional Hausdorff Measure.....................723
[III] Hausdorff Measure of Jordan Curves...................724
§29 Hausdorff Measures of Integral and Fractional Dimensions..........729
[I] Hausdorff Measure of Integral Dimension and Lebesgue Measure.....729
[II] Calculation of the n-dimensional Hausdorff Measure of a Unit Cube in R™ 731
[III] Transformation of Hausdorff Measure of Integral Dimension.......737
[IV] Hausdorff Measure of Fractional Dimension...............742
A Digital Expansions of Real Numbers 751
[I] Existence of p-digital Expansion......................751
[II] Uniqueness Question in /»-digital Representation.............754
[III] Cardinality of the Cantor Ternary Set...................757
B Measurability of Limits and Derivatives 761
[I] Borei Measurability of Limits of a Function ................761
[H] Borei Measurability of the Derivative of a Function............765
C Lipschitz Condition and Bounded Derivative 769
D Uniform Integrability 771
[I] Uniform Integrability ............................771
[II] Equi-integrability..............................777
[IH] Uniform Integrability on Finite Measure Spaces .............780
E Product-measurability and Factor-measurability 789
[I] Product-measurability and Factor-measurability of a Set..........789
[II] Product-measurability and Factor-measurability of a Function ......791
F Functions of Bounded Oscillation 793
[I] Partition of Closed Boxes in R .......................793
[O] Bounded Oscillation in R .........................795
[III] Bounded Oscillation on Subsets......................796
[IV] Bounded Oscillation on 1-dimensional Closed Boxes ..........797
[V] Bounded Oscillation and Measurability..................798
[VI] Evaluation of the Total Variation of an Absolutely Continuous Function . 799
xii
Bibliography
Index
Contents
803
805
|
any_adam_object | 1 |
author | Yeh, James |
author_facet | Yeh, James |
author_role | aut |
author_sort | Yeh, James |
author_variant | j y jy |
building | Verbundindex |
bvnumber | BV041787808 |
classification_rvk | SK 400 SK 420 |
classification_tum | MAT 280f |
ctrlnum | (OCoLC)890066796 (DE-599)OBVAC11338333 |
discipline | Mathematik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01782nam a2200445 c 4500</leader><controlfield tag="001">BV041787808</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160404 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140409s2014 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814578547</subfield><subfield code="c">pbk</subfield><subfield code="9">978-981-4578-54-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814578530</subfield><subfield code="9">978-981-4578-53-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890066796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC11338333</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 420</subfield><subfield code="0">(DE-625)143238:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 280f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yeh, James</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real analysis</subfield><subfield code="b">theory of measure and integration</subfield><subfield code="c">J. Yeh</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 815 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Erg. u.d.T.: Yeh, James: Problems and proofs in real analysis. - 1. Aufl. u.d.T.: Yeh, James: Lectures on real analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027233508&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027233508</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV041787808 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:05:23Z |
institution | BVB |
isbn | 9789814578547 9789814578530 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027233508 |
oclc_num | 890066796 |
open_access_boolean | |
owner | DE-824 DE-19 DE-BY-UBM DE-739 DE-11 DE-91G DE-BY-TUM |
owner_facet | DE-824 DE-19 DE-BY-UBM DE-739 DE-11 DE-91G DE-BY-TUM |
physical | XXIII, 815 S. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific |
record_format | marc |
spelling | Yeh, James Verfasser aut Real analysis theory of measure and integration J. Yeh 3. ed. Singapore [u.a.] World Scientific 2014 XXIII, 815 S. txt rdacontent n rdamedia nc rdacarrier Erg. u.d.T.: Yeh, James: Problems and proofs in real analysis. - 1. Aufl. u.d.T.: Yeh, James: Lectures on real analysis Reelle Analysis (DE-588)4627581-2 gnd rswk-swf Maßtheorie (DE-588)4074626-4 gnd rswk-swf Integrationstheorie (DE-588)4138369-2 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Reelle Analysis (DE-588)4627581-2 s DE-604 Maßtheorie (DE-588)4074626-4 s Integrationstheorie (DE-588)4138369-2 s HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027233508&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Yeh, James Real analysis theory of measure and integration Reelle Analysis (DE-588)4627581-2 gnd Maßtheorie (DE-588)4074626-4 gnd Integrationstheorie (DE-588)4138369-2 gnd |
subject_GND | (DE-588)4627581-2 (DE-588)4074626-4 (DE-588)4138369-2 (DE-588)4123623-3 |
title | Real analysis theory of measure and integration |
title_auth | Real analysis theory of measure and integration |
title_exact_search | Real analysis theory of measure and integration |
title_full | Real analysis theory of measure and integration J. Yeh |
title_fullStr | Real analysis theory of measure and integration J. Yeh |
title_full_unstemmed | Real analysis theory of measure and integration J. Yeh |
title_short | Real analysis |
title_sort | real analysis theory of measure and integration |
title_sub | theory of measure and integration |
topic | Reelle Analysis (DE-588)4627581-2 gnd Maßtheorie (DE-588)4074626-4 gnd Integrationstheorie (DE-588)4138369-2 gnd |
topic_facet | Reelle Analysis Maßtheorie Integrationstheorie Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027233508&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT yehjames realanalysistheoryofmeasureandintegration |