Sustainable energy solutions in agriculture:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2014
|
Schriftenreihe: | Sustainable energy developments
8 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXIX, 453 S. Ill., graph. Darst. |
ISBN: | 9781138001183 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV041732184 | ||
003 | DE-604 | ||
005 | 20141010 | ||
007 | t | ||
008 | 140312s2014 ad|| |||| 00||| eng d | ||
020 | |a 9781138001183 |c hardback : alk. paper |9 978-1-138-00118-3 | ||
035 | |a (OCoLC)888017648 | ||
035 | |a (DE-599)BVBBV041732184 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-1028 | ||
084 | |a LAN 793f |2 stub | ||
245 | 1 | 0 | |a Sustainable energy solutions in agriculture |c eds., Jochen Bundschuh ... |
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2014 | |
300 | |a XXXIX, 453 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Sustainable energy developments |v 8 | |
650 | 0 | 7 | |a Energieversorgung |0 (DE-588)4014736-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nachhaltigkeit |0 (DE-588)4326464-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Energieerzeugung |0 (DE-588)4070813-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Landwirtschaft |0 (DE-588)4034402-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Landwirtschaft |0 (DE-588)4034402-2 |D s |
689 | 0 | 1 | |a Energieversorgung |0 (DE-588)4014736-8 |D s |
689 | 0 | 2 | |a Energieerzeugung |0 (DE-588)4070813-5 |D s |
689 | 0 | 3 | |a Nachhaltigkeit |0 (DE-588)4326464-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bundschuh, Jochen |d 1960- |0 (DE-588)1064353835 |4 edt | |
830 | 0 | |a Sustainable energy developments |v 8 |w (DE-604)BV040312835 |9 8 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027178943&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027178943 |
Datensatz im Suchindex
_version_ | 1804152015968796672 |
---|---|
adam_text | Titel: Sustainable energy solutions in agriculture
Autor: Bundschuh, Jochen
Jahr: 2014
Table of contents
About the book series vii
Editorial board ix
List of contributors xxxi
Foreword by Bill Stout xxxiii
Editors Foreword xxxv
About the editors xxxvii
Acknowledgements xxxix
Section 1: Introduction
1. Towards a sustainable energy technologies based agriculture 3
Jochen Bundschuh, Gnangnan Chen Shahba: Mushtaq
1.1 Introduction 3
1.1.1 Challenges 8
1.2 Sustainable energy options in agriculture 10
1.2.1 Energy efficiency and energy conservation 10
1.2.1.1 Enhancing irrigation and energy efficiency of the irrigated
systems 11
1.2.1.2 Cooling and heating 12
1.2.2 Use of biomass and biomass waste for carbon-neutral production of
biofuel, electricity and bio-coal fertilizers 12
1.2.3 Decentralized renewable energy systems (solar, wind, geothermal) 13
1.2.4 Economic benefit of green food 13
1.3 Conclusions 13
Section 2: Energy efficiency and management
2. Global energy resources, supply and demand, energy security and on-farm energy
efficiency 19
Ralph E.H. Sims
2.1 Introduction 19
2.1.1 Energy access 20
2.1.2 Environmental impacts 22
2.1.3 Food price and energy nexus 22
2.2 Global energy trends 24
2.2.1 Bridging the emissions gap 26
2.3 Other major related issues 28
2.3.1 Economic viability 28
2.3.2 Competing land uses 28
2.3.3 Dangerous climate change 28
2.3.4 Existing efforts are inadequate 29
2.4 Global energy supply for agriculture 30
xxi
xxii Table of contents
2.5 Energy efficiency in agriculture 32
2.5.1 Tractors and machinery 34
2.5.2 Irrigation 34
2.5.3 Fertilizers 35
2.5.4 Dairy farms 36
2.5.5 Sheep and beef farms 38
2.5.6 Intensive livestock production and fishing 39
2.5.7 Greenhouse production 42
2.5.8 Fruit production 44
2.5.9 Cropping 46
2.6 Conclusions 48
3. Energy in crop production systems 53
JeffN. Tullberg
3.1 Introduction 53
3.2 Energy distribution in farming systems 53
3.3 Input energy efficiency 55
3.3.1 Farm machinery operations 55
3.3.2 Tractive power transmission 55
3.3.3 Efficiency of tractor-powered tillage 57
3.4 Land preparation by tillage 58
3.4.1 Tillage equipment 58
3.4.2 Tillage objectives and functions 59
3.5 Embodied energy 60
3.5.1 Machinery 60
3.5.2 Fertilizer 62
3.5.3 Agricultural chemicals 63
3.6 More energy-efficient cropping systems 64
3.6.1 General considerations 64
3.6.2 No-till and conservation agriculture 65
3.6.3 Controlled traffic farming 68
3.6.4 Precision and high-technology 70
3.6.4.1 Precision agriculture 70
3.6.4.2 Precision guidance 70
3.6.4.3 Robotics 71
3.6.5 Cropping system energy comparisons 72
3.7 Conclusion 73
4. The fossil energy use and C02 emissions budget for Canadian agriculture 77
James Arthur Dyer, Raymond Louis Desjardins Brian Glenn McConkey
4.1 Introduction 77
4.1.1 Energy use issues 77
4.1.1.1 GHG emissions 77
4.1.1.2 Energy supply 77
4.1.1.3 Food security 78
4.1.1.4 Biofuel crops 78
4.1.1.5 CC adaptation 78
4.1.2 Defining the farm energy budget 78
4.1.2.1 Group 1 79
4.1.2.2 Group 2 79
4.1.2.3 Group 3 80
4.1.2.4 Excluded energy terms 80
Table of contents xxiii
4.2 Methodology 80
4.2.1 Modeling farm energy consumption 80
4.2.2 Computations for field operations 81
4.2.3 Response to tillage systems 82
4.2.4 Converting energy use to fossil CO2 emissions 82
4.2.5 Interfacing farm energy use with other GHG emission models 84
4.3 Farm energy use calculations 85
4.3.1 Land use areas 86
4.3.1.1 Land use 87
4.3.1.2 Farm field operations 87
4.3.1.3 Farm energy use budget 88
4.3.1.4 Fossil energy use for livestock production 88
4.4 Results 90
4.5 Discussion and conclusions 91
5. Energy efficiency technologies for sustainable agriculture and food processing 97
Lijun Wang
5.1 Introduction 97
5.2 Energy consumption in the agricultural production and food processing 97
5.2.1 Energy consumption in the agricultural production 97
5.2.2 Energy consumption in the food industry 99
5.2.2.1 Overview of energy consumption in the food industry 99
5.2.2.2 Energy use in different food manufacturing sectors 100
5.2.2.3 Energy use for production of different food products 101
5.2.3 Energy sources in the agricultural and food industry 101
5.2.3.1 Energy sources for agricultural production 101
5.2.3.2 Energy sources for food processing 101
5.2.4 Energy efficiency in agricultural production and food processing 104
5.3 Energy conservation and management in agricultural production and food
processing 105
5.3.1 Energy conservation in agricultural production 105
5.3.2 Energy conservation in the utilities in food processing facilities 106
5.3.2.1 Energy savings in steam supply 106
5.3.2.2 Energy savings in compressed air supply 107
5.3.2.3 Energy savings in power supply 107
5.3.2.4 Energy savings in heat exchanger 107
5.3.2.5 Energy savings by recovering waste heat 108
5.3.3 Energy conservation in energy-intensive unit operations of
food processes 108
5.3.3.1 Energy savings in thermal food processing 108
5.3.3.2 Energy savings in concentration, dehydration and drying 109
5.3.3.3 Energy savings in refrigeration and freezing 110
5.4 Utilizations of energy efficiency technologies in agricultural production and food
processing 110
5.4.1 Application of novel thermodynamic cycles 111
5.4.1.1 Heat pump 111
5.4.1.2 Novel refrigeration cycles 112
5.4.1.3 Heat pipes 115
5.4.2 Application of non-thermal food processes 116
5.4.2.1 Food irradiation 117
5.4.2.2 Pulsed electric fields 117
5.4.2.3 High-pressure processing 117
xxiv Table of contents
5.4.2.4 Membrane processing 118
5.4.2.5 Supercritical fluid processing 118
5.4.3 Application of novel heating methods 118
5.4.3.1 Microwave and radio frequency heating 118
5.4.3.2 Ohmic heating 119
5.4.3.3 Infrared radiation heating 119
5.5 Summary 120
6. Energy-smart food - technologies, practices and policies 123
Ralph E.H. Sims Alessandro Flammini
6.1 Introduction 123
6.1.1 The key challenges 124
6.1.2 Scales of agricultural production 127
6.1.2.1 Subsistence 128
6.1.2.2 Small family farms 128
6.1.2.3 Small businesses 129
6.1.2.4 Large farms 129
6.2 Energy inputs and GHG emissions 130
6.2.1 Energy inputs for primary production 134
6.2.1.1 Tractors and machinery 134
6.2.1.2 Irrigation 135
6.2.1.3 Fertilizers 135
6.2.1.4 Livestock 136
6.2.1.5 Protected cropping in greenhouses 136
6.2.1.6 Fishing and aquaculture 136
6.2.1.7 Forestry 137
6.2.2 Energy inputs for secondary production 137
6.2.2.1 Drying, cooling and storage 137
6.2.2.2 Transport and distribution 137
6.2.3 Food processing 139
6.2.3.1 Preparation and cooking 139
6.3 The human dimension 140
6.3.1 Food losses and wastage 140
6.3.2 Changing diets 143
6.3.3 Modern energy services 144
6.4 Renewable energy supplies from agriculture 145
6.4.1 Renewable energy resources 146
6.4.2 Renewable energy systems 147
6.4.2.1 Biomass and bioenergy 149
6.4.2.2 Non-biomass renewable energy 151
6.4.3 The potential for energy-smart agriculture 151
6.4.3.1 A landscape approach to farming systems 151
6.4.3.2 Institutional arrangements and innovative business models 154
6.5 Policy options 155
6.5.1 Present related policies 156
6.5.2 Future policy requirements 157
6.5.2.1 Agriculture 157
6.5.2.2 Energy access 158
6.5.2.3 Climate change 159
6.5.2.4 Efficient energy use 159
6.5.2.5 Renewable energy deployment 159
6.5.2.6 Human behavior 161
6.6 Achieving energy-smart food 162
Table of contents xxv
7. Energy, water and food: exploring links in irrigated cropping systems 171
Tamara Jackson Munir A. Hanjra
7.1 Introduction 171
7.1.1 Energy in agriculture 172
7.2 The energy-water nexus in crop production 172
7.2.1 Energy for irrigation 173
7.2.1.1 Factors affecting irrigation energy use 174
7.2.2 Energy and fertilizer 175
7.2.3 Energy and agrochemicals 175
7.2.4 Energy for machinery and equipment 176
7.2.4.1 Factors affecting input energy use for crop production 176
7.3 Patterns of energy consumption in irrigated agriculture 177
7.3.1 Study sites 177
7.3.2 Data requirements 178
7.3.3 Analyzing water application and energy consumption 179
7.3.3.1 Crop water requirements 179
7.3.3.2 Energy accounting 179
7.3.4 Results and discussion 181
7.3.4.1 Water application and energy consumption: baseline
conditions 181
7.3.4.2 Potential energy and water savings using pressurized irrigation
systems 183
7.3.5 Summary 187
7.4 Options for sustainable energy and water management in irrigated cropping
systems 187
7.4.1 Technical interventions 187
7.4.2 Policy strategies 188
7.5 Conclusions 189
8. Energy use and sustainability of intensive livestock production 195
Jukka Ahokas, Mari Rajaniemi, Hannu Mikkola, Jiiri Frorip, Eugen Kokin, Jaan Praks,
Väino Poikalainen, Imbi Veermäe Winfried Schäfer
8.1 Energy and livestock production 195
8.1.1 What is energy 196
8.1.2 Energy consumption and emissions 197
8.1.3 Direct and indirect energy 198
8.1.4 Efficiency 199
8.1.5 Energy analysis 199
8.1.5.1 Methodology of energy analysis 199
8.1.5.2 Energy ratio 201
8.1.5.3 Specific energy consumption 202
8.1.5.4 Types of energy analysis 204
8.2 Livestock production sustainability 205
8.2.1 Sustainability 205
8.2.2 C02 - equivalents 207
8.2.3 Livestock GHG emissions 207
8.3 Energy consumption in livestock production 208
8.3.1 Feed material production 208
8.3.1.1 Crop production 209
8.3.1.2 Grass and hay production 210
8.3.1.3 Concentrate production 211
8.3.2 Ventilation 212
8.3.3 Illumination 213
8.3.4 Heating of animal houses 215
xxvi Table of contents
8.3.4.1 Heat conduction 215
8.3.4.2 Heat losses by ventilation 218
8.3.5 Energy use follow-up 218
8.4 Energy use and saving in livestock production 219
8.4.1 Energy consumption in livestock production 219
8.4.2 Energy consumption in milk production 221
8.4.2.1 Milk production system 221
8.4.2.2 Energy used in milk production 222
8.4.2.3 Feed production and feed material 223
8.4.2.4 Use of direct energy 223
8.4.2.5 Milking and milk cooling 223
8.4.2.6 Lighting 226
8.4.2.7 Ventilation 226
8.4.2.8 Water pumping and hot water 228
8.4.2.9 Bringing up young cattle 228
8.4.3 Energy consumption in pork production 229
8.4.3.1 Pork production 229
8.4.3.2 Pork production energy consumption 231
8.4.3.3 Feed production and feed material 232
8.4.4 Energy consumption in broiler production 232
8.4.4.1 Broiler production 232
8.4.4.2 Energy consumption in broiler production 233
8.4.4.3 Lighting 235
8.4.4.4 Ventilation 236
8.4.4.5 Heating 237
8.4.4.6 Feed and feeding 238
8.5 Conclusions 239
9. Diesel engine as prime power for agriculture: emissions reduction
for sustainable mechanization 245
Xinqun Gui
9.1 Diesel engine as prime power for agriculture 245
9.2 Global non-road emissions regulations 246
9.3 Building blocks of diesel engines 250
9.3.1 Combustion system 250
9.3.2 Electronic engine control system 252
9.3.3 Fuel injection system 254
9.3.4 Turbocharching 255
9.3.5 Exhaust gas recirculation 257
9.4 After treatment technologies 259
9.4.1 Particulate matter and NO, 259
9.4.2 Exhaust filtration 259
9.4.3 Regeneration types 259
9.4.4 Active regeneration technologies 260
9.4.5 Diesel oxidation catalyst (DOC) 261
9.4.6 Diesel particulate filter (DPF) 262
9.4.7 Catalyst canning 263
9.4.8 Exhaust fuel dosing system 263
9.4.9 After treatment system integration and controls 264
9.4.9.1 DOC outlet temperature control 264
9.4.9.2 Soot loading prediction 265
9.4.9.3 Active regeneration control 266
Table of contents xxvii
9.4.10 Diesel engine NOv aftertreatment technologies 268
9.4.10.1 Selective catalytic reduction (SCR) 268
9.5 Meeting diesel emissions through tiers 269
9.5.1 Tier 3 and earlier engines 269
9.5.2 Meeting US EPA Tier 4 270
9.6 Biofuel for modern diesel engines 273
9.7 Summary and perspectives 273
Section 3: Biofuels
10. Biofuels from microalgae 277
Malcolm R. Brown Susan I. Blackburn
10.1 Introduction 277
10.1.1 Introduction to biofuels 277
10.1.2 History of investigation of biofuels from microalgae 277
10.1.3 Potential advantages of microalgae as biofuel feedstock 278
10.1.4 Overview of the production of biofuel from microalgae 278
10.1.5 Current status of commercial microalgal biofuel production and future
prospects 280
10.2 General properties of microalgae 281
10.2.1 Taxonomy and general characteristics 281
10.2.2 Sourcing and maintaining microalgae species or strains 281
10.2.3 Chemical profiles of microalgae 282
10.2.3.1 Proximate composition 282
10.2.3.2 Qualitative aspects of proximate composition - amino acids
and sugars 283
10.2.3.3 Lipid class and fatty acids 283
10.2.3.4 Other chemical components within microalgae of commer-
cial interest 284
10.3 Selection of strains as candidates for biofuel feedstock 286
10.3.1 Growth rates and environmental tolerances from small-scale cultures 286
10.3.2 Screening for total lipid, and fatty acid quality 286
10.3.3 Other strain selection criteria 288
10.4 Scaling up production of microalgae biomass 288
10.4.1 General considerations 288
10.4.1.1 Light and temperature 289
10.4.1.2 Inorganic nutrients 290
10.4.1.3 C02 290
10.4.1.4 Land and water 291
10.4.2 Pond systems 291
10.4.3 Photobioreactors (PBRs) 294
10.4.4 Fermentation systems 296
10.4.5 Hybrid growth systems 296
10.4.6 Productivities of microalgae growth systems 296
10.4.7 Improving productivity through technical and biological approaches 298
10.4.7.1 Culture system design 298
10.4.7.2 Ecological approaches 298
10.4.7.3 Breeding and genetic engineering 299
10.5 Harvesting of microalgal biomass 299
10.5.1 Flocculation 300
10.5.2 Gravity sedimentation 300
10.5.3 Flotation 301
10.5.4 Centrifugation 301
xxviii Table of contents
10.5.5 Filtration 301
10.5.6 Other Separation techniques 302
10.6 Conversion of biomass to biofuels 302
10.6.1 Drying of microalgae biomass 302
10.6.2 Extraction of oil 303
10.6.3 Processes and biofuel products from microalgae 303
10.6.3.1 Biodiesel production 303
10.6.3.2 Bio-oil production by hydrothermal liquefaction 304
10.6.3.3 Gasification for syngas 304
10.6.3.4 Pyrolysis for bio-oil, biochar and syngas 304
10.6.3.5 Direct combustion 305
10.6.3.6 Fermentation processes to produce ethanol 305
10.6.3.7 Hydrogen through fermentation or biophotolysis 306
10.6.3.8 Anaerobic digestion for methane production 307
10.7 Towards commercial production 307
10.7.1 Current industry state 307
10.7.2 Economics of biofuel production 308
10.7.3 The concept of an integrated biorefinery 310
10.7.4 Environmental sustainability and life cycle analysis (LCA) 311
10.7.5 Political and social factors 313
10.8 Conclusion 313
11. Biodiesel emissions and performance 323
Syed Ameer Basha
11.1 Introduction 323
11.1.1 Need of biodiesel 323
11.1.2 Biofuel 325
11.1.3 Production of biodiesel 326
11.2 Biodiesel emissions 326
11.2.1 NO, 328
11.2.2 CO, 329
11.2.3 HC emissions of biodiesel 329
11.2.4 Particulate matter (PM) emissions 330
11.3 Biodiesel performance 330
11.3.1 Brake specific fuel consumption 330
11.3.2 Efficiency 331
11.4 Effect of a catalyst or additive 331
11.4.1 Effect of a catalyst on biodiesel emissions 331
11.4.2 Effect of catalysts and additives on biodiesel performance 332
11.4.2.1 Brake specific fuel consumption 332
11.4.2.2 Efficiency 332
11.5 Conclusions 332
12. Biogas 335
Paul Harris Hans Oechsner
12.1 Introduction 335
12.2 What is biogas? 335
12.3 Brief history 336
12.4 Anaerobic digestion 337
12.5 Uses of biogas 338
12.6 Uses for liquid/sludge 339
12.7 Modeling digester performance 339
12.8 Digester performance 339
12.9 Types of digesters 341
Table of contents xxix
12.10 Gas storage 342
12.11 Safety 344
12.11.1 Fire/explosion 344
12.11.2 Disease 344
12.11.3 Asphyxiation 345
12.11.4 Summary 346
12.12 Advanced digestion 346
12.12.1 High rate digesters 347
12.12.2 Two stage digesters 347
12.12.3 Anaerobic filters 348
12.12.4 Upflow anaerobic sludge blanket (UASB) digesters 348
12.12.5 Suspended growth digesters 348
12.12.6 Salt water digesters 348
12.12.7 Solid digestion 348
12.13 Packaged units 349
12.14 Startup 349
12.15 Monitoring digester operation 350
12.15.1 Indication of C02 percentage 350
12.15.2 Measuring gas pressure 351
12.16 Burners 351
12.17 Faultfinding 352
12.18 Construction tips 353
12.19 Conclusions 353
13. Thermal gasification of waste biomass from agriculture production for
energy purposes 355
Janusz Piechocki, Dariusz Wisniewski Andrzej Bialowiec
13.1 Introduction 355
13.2 Biomass waste 355
13.2.1 Properties of biomass 357
13.2.2 Biomass for energy production 357
13.3 Thermal gasification 361
13.3.1 Pyrolysis as the basic process of biomass gasification 362
13.3.2 Biomass torréfaction 363
13.3.3 Gasification-basic reactions 365
13.3.4 Biomass gasification methods 367
13.3.5 Byproducts of biomass gasification and elimination methods 376
13.3.6 Design parameters of gasification reactors 377
13.4 Summary 379
14. An innovative perspective: Transition towards a bio-based economy 383
Nicole van Beeck, Albert Moerkerken, Kees Kwant Bert Stuij
14.1 Introduction: Why we need a bio-based economy 383
14.1.1 Towards a sustainable future 383
14.1.2 Relationship between agriculture and energy 383
14.1.3 What are the challenges? 384
14.1.4 The smart approach: a bio-based economy 385
14.2 Agriculture: The foundation of a bio-based economy 386
14.2.1 Agriculture and food 386
14.2.2 Soil fertility 388
14.2.3 Land use 388
14.2.4 Wastes in the food chain 390
14.2.5 Agrification policy at the origin of non-food industrial applications of
biomass 390
xxx Table of contents
14.3 Biomass at the basis of sustainable energy supply 392
14.3.1 Current energy demand 392
14.3.2 Food for thought: energy demand versus food demand 393
14.3.3 The carbon balance: the theoretical potential for a bio-based economy 394
14.3.4 Sustainability of biomass 396
14.4 A cascading approach for sustainable deployment of biomass and the Trias
Biológica 398
14.5 Case studies of cascading in The Netherlands 400
14.5.1 Facts and figures of The Netherlands 400
14.5.2 The Trias Biológica: the sugar case 401
14.5.2.1 De-carbonization 401
14.5.2.2 Substitution of fossil carbon with bio-based carbon 403
14.5.2.3 Cascading 404
14.5.2.4 De-carbonization 405
14.5.2.5 Substitution 405
14.5.2.6 Cascading 406
14.5.3 Bio-refinery: the grass cascading case 406
14.5.4 Making circular chains: the manure case 408
14.6 Discussion and conclusions on impact and prospects 410
Section 4: Access to energy
15. Increasing energy access in rural areas of developing countries 419
Xavier Lemaire
15.1 Introduction 419
15.1.1 The current situation of energy access in developing countries and the
opportunity offered by the RET s 419
15.1.1.1 Contrasting situation across continents 419
15.1.1.2 The rationale for decentralized generation with RETs 420
15.1.1.3 How to deliver energy services to remote places, and what
services to deliver? 420
15.2 Policy and institutions for energy access 421
15.2.1 The role of energy regulators and rural electrification agencies 421
15.2.1.1 Light-handed regulation 422
15.2.1.2 Standards and codes of practices 422
15.2.1.3 Planning 423
15.2.1.4 Who should be regulating off-grid electricity services, and
why? 424
15.2.2 Funding and the question of subsidies 424
15.2.2.1 Targeted subsidies 425
15.2.2.2 Subsidies for mini-grid technologies 426
15.2.2.3 Subsidies for decentralized stand-alone systems 426
15.2.3 The role of rural energy service companies (RESCOs) 426
15.2.3.1 Different business models for increasing energy access in
rural areas with small decentralized RET systems 427
15.2.3.2 Cash purchase and micro-credit models 427
15.2.3.3 Fee-for-service models 429
15.2.3.4 Fee-for-service versus micro-credit models 430
15.2.3.5 Increasing energy access by using by-product of agriculture 431
15.3 Conclusion 432
Subject index 437
Book series page 455
|
any_adam_object | 1 |
author2 | Bundschuh, Jochen 1960- |
author2_role | edt |
author2_variant | j b jb |
author_GND | (DE-588)1064353835 |
author_facet | Bundschuh, Jochen 1960- |
building | Verbundindex |
bvnumber | BV041732184 |
classification_tum | LAN 793f |
ctrlnum | (OCoLC)888017648 (DE-599)BVBBV041732184 |
discipline | Agrarwissenschaft |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01765nam a2200421 cb4500</leader><controlfield tag="001">BV041732184</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141010 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140312s2014 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781138001183</subfield><subfield code="c">hardback : alk. paper</subfield><subfield code="9">978-1-138-00118-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)888017648</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041732184</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-1028</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LAN 793f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sustainable energy solutions in agriculture</subfield><subfield code="c">eds., Jochen Bundschuh ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXIX, 453 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Sustainable energy developments</subfield><subfield code="v">8</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieversorgung</subfield><subfield code="0">(DE-588)4014736-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nachhaltigkeit</subfield><subfield code="0">(DE-588)4326464-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieerzeugung</subfield><subfield code="0">(DE-588)4070813-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Landwirtschaft</subfield><subfield code="0">(DE-588)4034402-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Landwirtschaft</subfield><subfield code="0">(DE-588)4034402-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Energieversorgung</subfield><subfield code="0">(DE-588)4014736-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Energieerzeugung</subfield><subfield code="0">(DE-588)4070813-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Nachhaltigkeit</subfield><subfield code="0">(DE-588)4326464-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bundschuh, Jochen</subfield><subfield code="d">1960-</subfield><subfield code="0">(DE-588)1064353835</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Sustainable energy developments</subfield><subfield code="v">8</subfield><subfield code="w">(DE-604)BV040312835</subfield><subfield code="9">8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027178943&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027178943</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV041732184 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:04:00Z |
institution | BVB |
isbn | 9781138001183 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027178943 |
oclc_num | 888017648 |
open_access_boolean | |
owner | DE-11 DE-1028 |
owner_facet | DE-11 DE-1028 |
physical | XXXIX, 453 S. Ill., graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | CRC Press |
record_format | marc |
series | Sustainable energy developments |
series2 | Sustainable energy developments |
spelling | Sustainable energy solutions in agriculture eds., Jochen Bundschuh ... Boca Raton [u.a.] CRC Press 2014 XXXIX, 453 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Sustainable energy developments 8 Energieversorgung (DE-588)4014736-8 gnd rswk-swf Nachhaltigkeit (DE-588)4326464-5 gnd rswk-swf Energieerzeugung (DE-588)4070813-5 gnd rswk-swf Landwirtschaft (DE-588)4034402-2 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Landwirtschaft (DE-588)4034402-2 s Energieversorgung (DE-588)4014736-8 s Energieerzeugung (DE-588)4070813-5 s Nachhaltigkeit (DE-588)4326464-5 s DE-604 Bundschuh, Jochen 1960- (DE-588)1064353835 edt Sustainable energy developments 8 (DE-604)BV040312835 8 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027178943&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sustainable energy solutions in agriculture Sustainable energy developments Energieversorgung (DE-588)4014736-8 gnd Nachhaltigkeit (DE-588)4326464-5 gnd Energieerzeugung (DE-588)4070813-5 gnd Landwirtschaft (DE-588)4034402-2 gnd |
subject_GND | (DE-588)4014736-8 (DE-588)4326464-5 (DE-588)4070813-5 (DE-588)4034402-2 (DE-588)4143413-4 |
title | Sustainable energy solutions in agriculture |
title_auth | Sustainable energy solutions in agriculture |
title_exact_search | Sustainable energy solutions in agriculture |
title_full | Sustainable energy solutions in agriculture eds., Jochen Bundschuh ... |
title_fullStr | Sustainable energy solutions in agriculture eds., Jochen Bundschuh ... |
title_full_unstemmed | Sustainable energy solutions in agriculture eds., Jochen Bundschuh ... |
title_short | Sustainable energy solutions in agriculture |
title_sort | sustainable energy solutions in agriculture |
topic | Energieversorgung (DE-588)4014736-8 gnd Nachhaltigkeit (DE-588)4326464-5 gnd Energieerzeugung (DE-588)4070813-5 gnd Landwirtschaft (DE-588)4034402-2 gnd |
topic_facet | Energieversorgung Nachhaltigkeit Energieerzeugung Landwirtschaft Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027178943&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV040312835 |
work_keys_str_mv | AT bundschuhjochen sustainableenergysolutionsinagriculture |