Iron-sulfur clusters in chemistry and biology:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
De Gruyter
2014
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIV, 648 S. Ill., graph. Darst. |
ISBN: | 9783110308327 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041722539 | ||
003 | DE-604 | ||
005 | 20140728 | ||
007 | t | ||
008 | 140306s2014 ad|| |||| 00||| eng d | ||
020 | |a 9783110308327 |9 978-3-11-030832-7 | ||
035 | |a (OCoLC)864557019 | ||
035 | |a (DE-599)BVBBV041722539 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-11 |a DE-19 | ||
084 | |a WD 5050 |0 (DE-625)148185: |2 rvk | ||
245 | 1 | 0 | |a Iron-sulfur clusters in chemistry and biology |c ed. by Tracey A. Rouault |
246 | 1 | 3 | |a Iron sulfur clusters in chemistry and biology |
264 | 1 | |a Berlin [u.a.] |b De Gruyter |c 2014 | |
300 | |a XXIV, 648 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Eisen-Schwefel-Proteide |0 (DE-588)4132650-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Eisen-Schwefel-Proteide |0 (DE-588)4132650-7 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Rouault, Tracey A. |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027169488&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027169488 |
Datensatz im Suchindex
_version_ | 1804152001391493120 |
---|---|
adam_text | Contents
Preface
-----
v
Tracey A. Rouault
biography
-----
vii
Contributing authors
-----xxiii
Francesco
Bonomi
and Tracey A. Rouault
1
Iron-sulfur proteins: a historical perspective
-----1
1.1
Framing the scene
-----1
1.2
The early days of nonheme iron
-----1
1.3
Of proteins and analogues
-----2
1.4
Beyond electron shuttles
-----6
1.5
How are FeS clusters synthesized in cells?
-----7
Acknowledgment
-----8
References
-----8
Toshiko Ichiye
2
Chemistry of iron-sulfur clusters
-----11
2.1
Introduction
-----11
2.2
Electronic structure of Fe-S complexes
-----12
2.2.1
Spin-polarization and strong metal-ligand bonds
-----12
2.2.2
Spin-coupling and metal-metal bonds
-----14
2.2.3
Spin resonance delocalization in mixed-valence iron pairs
-----14
2.3 ,
Unique properties of Fe-S clusters
-----15
2.3.1
Stable rigid clusters mean low reorganization energy
-----15
2.3.2
Polynuclear clusters mean multiple valency
-----16
2.3.3
Resonance delocalization and
[FeĄSĄ(Cys)Ą]
cluster conversion
-----16
2.4
Summary
-----18
Acknowledgments
-----18
References
-----18
Doros
T. Petasis
and Michael P. Hendrich
3
Quantitative interpretation of EPR spectroscopy
with applications for iron-sulfur proteins
-----21
3.1
Introduction
-----21
3.2
Basic EPR theory
-----22
3.3
g
Factor anisotropy
-----24
3.4
Hyperfine structure
-----24
3.5
Ligand interactions
-----26
3.6
Spin Hamiltonian
-----27
3.7
Basic EPR instrumentation
-----28
χ
—— Contents
3.8 Simulation
of powder
spectra
-----29
3.9
Quantitative aspects
-----31
3.10
Examples
-----33
3.10.1
S
= 1/2
systems
-----33
3.10.2
Spin systems with
S
= 3/2
,
5/2, 7/2,
etc.
-----37
3.10.3
Spin systems with
S
= 1, 2, 3,
etc.
-----42
3.11
Conclusion
-----46
References
-----46
Mrinmoy Chakrabarti and Paul
A. Lindahl
4
The utility of
Mössbauer
spectroscopy in
e u kary
otic
cell biology and animal physiology
-----49
4.1
Introduction
-----49
4.2
Transitions associated with MBS
-----49
4.3
Coordination chemistry of iron
-----51
4.4
Electron spin angular momentum and EPR spectroscopy
-----53
4.5
High-spin vs low-spin Fe and Fe1 complexes
-----53
4.6 Isomer
shift
(ö)
and quadrupole splitting (AEq)
-----53
4.7
Effectsofa
magnetic field
-----54
4.8
Slow vs fast relaxation limit
-----55
4.9
MB properties of individual Fe centers found in
biological systems
-----56
4.10
Magnetically interacting Fe aggregates
-----58
4.11
Insensitivity of MBS and a requirement for 57Fe enrichment
-----59
4.12
Invariance
of spectral intensity among Fe centers
-----60
4.12.1
Mitochondria
-----60
4.12.2
Vacuoles
-----63
4.12.3
Whole yeast cells
-----64
4.12.4
Human mitochondria and cells
-----65
4.12.5
Blood
-----65
4.12.6
Heart
-----67
4.12.7
Liver
-----67
4.12.8
Spleen
-----68
4.12.9
Brain
-----68
4.13
Limitations of MBS and future directions
-----70
Acknowledgments
-----71
References
-----72
Yilin Hu and
Markus Ribbe
5
The interstitial carbide of the nitrogenase M-cluster: insertion
pathway and possible function
-----77
5.1
Introduction
-----77
5.2
Proposed role of NifB in carbide insertion
-----79
Contents ------ xi
5.3
Accumulation
of a cluster intermediate on NifB
-----80
5.4
Investigation of the insertion of carbide into the M-cluster
-----82
5.5
Tracing the fate of carbide during substrate turnover
-----85
References
-----86
Thomas Spatzat,
Susana
L
A. Andrade and
Oliver Einsle
6
The
iron-molybden
um
cofactor of nitrogen
ase-----
89
6.1
Introduction
-----89
6.2
The metal clusters of nitrogenase
-----90
6.3
Structure of FeMoco
-----91
6.4
Redox
properties of FeMoco
-----93
6.5
An overlooked detail: the central light atom
-----94
6.6
The nature of X
-----96
6.7
Insights into the electronic structure of FeMoco
-----100
6.8
A central carbon
-
consequences and perspectives
-----101
Acknowledgments
-----103
References
-----103
Joseph T. Jarrett
7
Biotin synthase: a role for iron-sulfur clusters
in the radical-mediated generation of carbon-sulfur bonds
-----107
7.1
Introduction
-----107
7.2
Sulfur atoms in biomolecules
-----108
7.3
Biotin chemistry and biosynthesis
-----109
7.4
The biotin synthase reaction
-----
111
7.5
The structure of biotin synthase and the radical
SAM superfamily
-----113
7.6
The [4FC-4S]2* cluster and the radical SAM superfamily
-----117
7.7
The pFe^S]2* cluster and the sulfur insertion reaction
-----120
7.8
Characterization of an intermediate containing 9-MDTB
and a [2¥e-2SY cluster
-----121
7.9
Other important aspects of the biotin synthase reaction
-----122
7.10
A role for iron-sulfur cluster assembly in the biotin
synthase reaction
-----123
7.11
Possible mechanistic similarities with other sulfur insertion
radical SAM enzymes
-----125
Acknowledgment
-----127
References
-----127
Russ Hille
8
Molybdenum-containing iron-sulfur enzymes
-----133
8.1
Introduction
-----133
8.2
The xanthine
oxidase
family
-----134
xii ----- Contents
8.2.1
D. gigas aldehyderferredoxín oxidoreductase
-----135
8.2.2
Bovine
xanthine oxidoreductase
-----137
8.2.3 Aldehyde
oxidases-----
145
8.2.4
CO dehydrogenase
-----148
8.2.5
4-Hydroxybenzoyl-CoA reductase
-----152
8.3
The DMSO reductase
fam
ily-----
153
8.3.1
DMSO reductase and DMS dehydrogenase
-----155
8.3.2
Polysulfide reductase
-----165
8.3.3
Ethylbenzene dehydrogenase
-----169
8.3.4
Formatedehydrogenases
-----170
8.3.5
Bacterial nitrate reductases
-----180
8.3.6
Arsen
ite
oxidase
and arsenate reductase
-----188
8.3.7
PyrogaUolrphloroglucinol transhydroxylase
-----192
8.4
Prospectus
-----194
References
-----195
Nicholas D. Lanz and Squire J. Booker
9
The role of iron-sulfur clusters in the biosynthesis
of the lipoyl cofactor
-----211
9.1
Introduction
-----211
9.2
Discovery of LA
-----211
9.3
Functions of the lipoyl cofactor
-----212
9.3.1
Primary metabolism
-----212
9.3.2
Antioxidant
-----214
9.4
Pathways for lipoyl cofactor biosynthesis
-----215
9.4.1
Exogenous pathway
-----215
9.4.2
Endogenous pathway
-----216
9.5
Characterization of LipA
-----217
9.5.1
Discovery of LipA
-----217
9.5.2
in vivo characterization of LipA
-----217
9.5.3
LipA is an iron-sulfur enzyme
-----219
9.5.4
LipA is an RS enzyme
-----220
9.5.5
Product inhibition of LipA
-----224
9.5.6
LipA contains two
fcFe-AS]
clusters
-----225
9.5.7
Two distinct roles for the iron-sulfur clusters
-----226
9.5.8
A unique intermediate
-----227
9.5.9
A proposed mechanism for the biosynthesis of the lipoyl
cofactor
-----229
9.6
Conclusions
-----231
Acknowledgment
-----231
References
-----231
Contents — xiii
Yvain Nicoletand Juan C. Fontecilla-Camps
10
Iron-sulfur clusters and molecular oxygen: function, adaptation,
degradation, and repair
-----239
10.1
Introduction
-----239
10.2
Fe-S clusters
-
reasons for their abundance
-----240
10.2.1
Origin of Fe-S clusters
-----240
10.2.2
Functions of Fe-S clusters
-----241
10.3
Oxygen and Fe-S clusters
-----243
10.3.1
Properties of molecular oxygen and its partially
reduced species
-----243
10.3.2
Oxidative damage to Fe-S clusters
-----245
10.3.3
Molecular mechanisms of oxidative damage to Fe4S4 clusters
-----246
10.3.4
Fe3S4
řo
Fe2S2 caster conversion in FNR
-----247
10.3.5
X-ray crystallographic studies
-----247
10.3.6
Alternative reactions can occur and compete
-----249
10.3.7
Structural changes
-----250
10.4
Adaptation to oxygen
-----250
10.4.1
Switch between metabolisms or restriction to niches
-----252
10.4.2
Oj-tolerant NiFe hydrogenases
-----253
10.4.3
Protective systems against
ROS
-----256
10.4.4
Evolutionary replacement of Fe-S clusters to keep essential functions
in aerobic organisms
-----257
10.5
Conclusions
-----258
References
-----259
Patricia
С
Dos
Santos and Dennis R. Dean
11
A retrospective on the discovery of [Fe-S] cluster
biosynthetic machineries in Azotobacter vinelandii
-----267
11.1
Introduction
-----267
11.2
An introduction to nitrogenase
-----269
11.3
Approaches to identify gene-product and product-function
relationships
-----273
11.4
FeMoco and development of the scaffold hypothesis
for complex [Fe-S] cluster formation
-----273
11.5
An approach for the analysis of nif gene product
function
-----276
11.5.1
Phenotypes associated with loss of NifS or NifU function indicate
their involvement in nitrogenase-associated [Fe-S] cluster
formation
-----277
xiv —— Contents
11.5.2
N tfS is
a cysteine
desulfurase
-----278
11.5.3
Extension of the scaffold hypothesis to NifU
function
-----282
11.5.4
Discovery of
isc
system for [Fe-S) cluster formation and
functional cross-talk among [Fe-S] cluster biosynthetic
systems
-----288
11.6
The lsc system is essential in A. vinelandii
-----290
11.7
There is limited functional cross-talk between the Nif
and lsc systems
-----291
11.8
Closing remarks
-----292
Acknowledgments
-----292
References
-----292
F. Wayne Outten
12
A stress-responsive Fe-S cluster biogenesis system
in bacteria
-
the
suf
operon of Gammaproteobacteria
-----297
12.1
Introduction to Fe-S cluster biogenesis
-----297
12.2
Sulfur trafficking for Fe-S cluster biogenesis
-----298
12.3
Iron donation for Fe-S cluster biogenesis
-----299
12.4
Fe-S cluster assembly and trafficking
-----301
12.5
Iron and oxidative stress are intimately intertwined
-----303
12.6
Stress-response Fe-S cluster biogenesis in
£.
coli
-----306
12.7
Sulfur trafficking in the stress-response
Suf
pathway
-----307
12.8
Stress-responsive iron donation for the
Suf
pathway
-----311
12.8.1
Suf
D-----
311
12.8.2
Iron storage proteins
-----313
12.8.3
Other candidates
-----314
12.9
Unanswered questions about
Suf
and
Isc
roles in
E. coli
-----315
Acknowledgment
-----315
References
-----316
Erin L. Mettert, Nicole T. Pernaand and Patricia J. Kiley
13
Sensing the cellular Fe-S cluster demand: a structural, functional,
and phylogenetic overview of Escherichia coil IscR
-----325
13.1
Introduction
-----325
13.2
General properties of IscR
-----326
13.3
UFe^Sl-lscR represses lsc expression via a negative
feedback loop
-----328
13.4
IscR adjusts synthesis of the lsc pathway based on the cellular Fe-S
demand
-----330
13.5
IscR has a global role in maintaining Fe-S homeostasis
-----332
13.6
Fe-S cluster ligation broadens
DNA
site specificity for IscR
-----333
Contents —
XV
13.7 Phylogenetic
analysis of iscR
-----335
13.8
Binding to two classes of
DNA
sites allows IscR to differentially
regulate transcription in response to O2
-----339
13.9
Roles of IscR beyond Fe-S homeostasis
-----341
13.10
Additional aspects of IscR regulation
-----341
13.11
Summary
-----342
Acknowledgments
-----342
References
-----342
Patricia C.
Dos
Santos
14
Fe-S assembly in Gram-positive bacteria
-----347
14.1
Introduction
-----347
14.2
Fe-S proteins in Gram-positive bacteria
-----347
14.3
Fe-S cluster assembly orthologous proteins
-----349
14.3.1
Clostridia-ISC system
-----349
14.3.2
Actinobacteria-SUF
-----354
14.3.3
Bacilli-SUF
-----355
14.4
Concluding remarks and remaining questions
-----362
References
-----363
Debkumar Pain and Andrew
Daneis
15
Fe-S cluster assembly and regulation in yeast
-----367
15.1
Introduction
-----367
15.2
Yeast and Fe-S cluster assembly
-
evolutionary considerations
-----367
15.2.1
Nfsl and the surprise of Isdll
-----368
15.2.2
Scaffold proteins in yeast mitochondria
-----369
15.2.3
Frataxin s roles throughout evolution
-----370
15.2.4
Ssql is a specialized Hsp70 chaperone arising
by convergent evolution
-----371
15.2.5 Atmland
CIA components
-----371
15.2.6
Yeast components are conserved with their
human counterparts
-----372
15.2.7
Yeast Fe-S cluster assembly mutants modeling aspects of human
diseases
-----373
15.3
Yeast genetic screens pointing to the Fe-S cluster
assembly apparatus
-----374
15.3.1
Misregulation of iron uptake
-----374
15.3.2
Suppression of
àsodl amino
acid auxotrophies
-----375
15.3.3
tRNA modification and the SPL1-1
alíele
-----376
15.3.4
tRNA thiolation and resistance to killer toxin
-----376
15.3.5
Cytoplasmic aconitase maturation
-----376
15.3.6
Ribosome
assem
bly-----
377
xvi ----- Contents
15.3.7
Synthetic lethality with the
роіЗ-13
alíele-----
377
15.3.8
Factors needed for Yap5 response to high iron
-----378
15.3.9
Screening of essential genes coding for mitochondrial
proteins
-----379
15.4
Mitochondrial Fe-S cluster assembly
-----379
15.4.1
Mitochondrial
cysteine
desulfurase-----
381
15.4.2
Formation of the
Isu
Fe-S cluster intermediate
in mitochondria
-----385
15.4.3
Roles of
f
rataxi
η
-----386
15.4.4
Bypass mutation in
Isu
-----387
15.4.5
Transfer of the mitochondrial
Isu
Fe-S cluster intermediate
-----388
15.4.6
Role of Grx5
-----388
15.4.7
The switch between cluster synthesis and cluster
transfer
-----389
15.5
Role of glutathione
-----390
15.5.1
Glutathione and monothiol glutaredoxins in mitochondria
-----391
15.5.2
Glutathione and monothiol glutaredoxins Grx3 and Grx4
outside of mitochondria
-----392
15.6
Role of Atml, an ABC transporter of the mitochondrial
inner membrane
-----393
15.6.1
Cells lacking Atml lose mtDNA
-----394
15.7
Relationship between Fe-S cluster biogenesis
and iron homeostasis
-----396
15.8
Conclusion and missing pieces
-----402
Acknowledgments
-----403
References
-----403
Caryn E. Outten
16
The role of Fe-S clusters In regulation of yeast iron homeostasis
-----411
16.1
Introduction
-----411
16.2
Iron acquisition and trafficking in yeast
-----411
16.3
Regulation of iron homeostasis in
5.
cerevisiae
-----414
16.3.1
Aftl/Aftt low-iron transcriptional regulators and target genes
-----414
16.3.2
Yap5 high-iron transcriptional regulator and
target genes
-----416
16.3.3
Links among mitochondrial Fe-S cluster biogenesis, the
вгкЗ/втхА/
Fra2/Fral signaling pathway, and
Aftl/Aft2
regulation
-----417
16.3.4
Fe-S cluster binding by Grx3/4 and Fra2 is important for their function
in S. cerevisiae iron regulation
-----418
16.3.5
Working model for Fe-dependent regulation of Aftl/2 via the
Grx3/Grx4
signaling pathway
-----420
16.3.6
Yap5 regulation and mitochondrial Fe-S cluster biogenesis
-----422
Contents ----- xvii
16.4 Regulation
of iron
homeostasis in
S. pombe
-----423
16.4.1 Fepl
and Php4 transcriptional repressors and target
genes-----423
16.4.2
Roles for Grx4 in regulation of Fepl and Php4 activity
-----426
16.4.3
Molecular basis of iron-dependent control of Fepl activity
-----428
16.4.4
Molecular basis of iron-dependent control of Php4 activity
-----429
16.5
Summary
----430
Acknowledgments
-----431
References
-----431
TraceyA. Rouault
17
Biogenesis of Fe-S proteins in mammals
-----437
17.1
Introduction
-----437
17.2
The Fe-S regulatory switch of IRPl
-----437
17.3
IRP2, a highly homologous gene, also post-transcriptionally
regulates iron metabolism, but iron sensing occurs through the
regulation of its degradation rather than through an Fe-S switch
mechanism
-----441
17.4
Identification of the mammalian
cysteine
desulfurase
and two scaffold
proteins: implications for compartmentalization of the process
-----442
17.5
Sequential steps in Fe-S biogenesis
-
an initial Fe-S assembly
process on a scaffold, followed by Fe-S transfer to recipient proteins,
aided by a chaperone-co-chaperone system
-----443
17.6
Mitochondrial iron overload in response to defects in Fe-S biogenesis
raises important questions about how mitochondrial iron homeostasis
is regulated
-----446
17.7
Perspectives and future directions
-----447
References
-----448
Wing-Hang
Tong
18
Iron-sulfur proteins and human diseases
-----455
18.1
Introduction
----455
18.2
Oxidative susceptibility of Fe-S proteins
-----456
18.2.1
Aconitases: targets of oxidative stress in disease and aging
-----458
18.3
Diseases associated with genetic defects in Fe-S proteins
-----461
18.3.1
Mitochondrial respiratory complexes and human diseases
-----461
18.3.2
FECH deficiency causes erythropoietic protoporhyria
(MIM
177000)-----466
18.3.3 DNA
repair Fe-S proteins and human disorders
-----467
18.4
Diseases associated with genetic defects in Fe-S cluster
biogenesis
-----469
18.4.1
A GAA trinucleotide repeat expansion in FXN is the major cause of the
neurodegenerative
disorder
Friedreich
ataxia-----
472
xviii ----- Contents
18.4.2
Mutations
in ABCB7
cause
Х
-linked
sideroblastic
anemia
with
ataxia
-----476
18.4.3
Mutations in glutaredoxin
5
cause an autosomal recessive
pyridoxine-refractory sideroblastic anemia
-----477
18.4.4
Mutations in ISCU cause myopathy with lactic acidosis
(MIM
255125)-----478
18.4.5
NUBPL mutations cause childhood-onset mitochondrial
encephalomyopathy and respiratory complex I deficiency
(MIM252010)
-----481
18.4.6
Mutations in NFU1 cause multiple mitochondrial dysfunctions
syndrome
1
(MIM
605711)-----482
18.4.7
Mutations in BOLA3 cause multiple mitochondrial dysfunctions
syndrome
2
(MIM
614299)-----485
18.4.8
IBA57 deficiency causes severe myopathy and
encephalopathy
-----486
18.4.9
A mutation in ISD11 causes deficiencies of respiratory
com plexes
-----486
18.5
Fe-S cluster biogenesis and iron homeostasis
-----487
18.6
Therapeutic strategies
-----488
Acknowledgments
-----490
References
-----490
Silke Leimkühler
19
Connecting the biosynthesis of the molybdenum
cofactor, Fe-S clusters, and tRNA thiolation in humans
___513
19.1
Introduction
-----513
19.2
Pathways for the formation of
Moco
and thiolated tRNAs
in humans
-----515
19.2.1
Moco
biosynthesis in mammals
-----515
19.2.2
The role of tRNA thiolation in the cell
-----525
19.3
The connection between sulfur-containing biomoiecules and their
distribution in different compartments in the cell
-----527
19.3.1
Sulfur transfer in mitochondria
-----527
19.3.2
Sulfur transfer in the cytosol
-----529
19.3.3
Role of NFS1, ISD11,
URMI,
and MOCS2A in the nucleus
-----532
Acknowledgments
-----534
References
-----534
Kerstin
Gari
20
Iron-sulfur proteins and genome stability
-----541
20.1
Introduction
-----541
20.2
The importance of genome stability
-----541
Contents — Xix
20.3 Link
between FeS cluster biogenesis and genome stability
-----542
20.4
FeS proteins in
DNA
replication
-----544
20.4.1
DNA primase
and
DNA
polymerase
α-----
545
20.4.2 DNA
polymerases
б
and
ε
-----546
20.4.3
DNA2
-----547
20.5
FeS proteins in
DNA
repair
-----548
20.5.1 DNA
glycosylases
-----549
20.5.2
The Rad3 family of
helicases
-----551
20.6
Summary
-----555
References
-----555
Roland
Lili, Marta A. Užarska and James
Wohlschlegel
21
Eukaryotic iron-sulfur protein biogenesis and
its role in maintaining genomic integrity
-----541
21.1
Introduction
-----563
21.2
Biogenesis of
mitochondrïal
Fe-S proteins
-----568
21.2.1
Step
1:
De novo
Fe-S cluster assembly on the Isul scaffold
protein
-----568
21.2.2
Step
2:
Chaperone-dependent release of the Isul-bound
Fe-S cluster
-----569
21.2.3
Step
3:
Late-acting ISC assembly proteins function in [4Fe-4S]
cluster synthesis and in target-specific Fe-S cluster insertion
-----571
21.3
The role of the mitochondrial ABC transporter Atml
in the biogenesis of cytosolic and nuclear Fe-S proteins
and in iron regulation
-----574
21.4
The role of the CIA machinery in the biogenesis of cytosolic
and nuclear Fe-S proteins
-----576
21.4.1
Step
1:
The synthesis of a [4Fe-4S] on the scaffold complex
Cfdl-NbpSS
-----576
21.4.2
Step
2:
Transfer of the [4Fe-4S] cluster to target
apo-proteins
-----576
21.5
Specialized functions of the human CIA-targeting
complex components
-----577
21.5.1
Dedicated biogenesis of cytosolic and nuclear
Fe-S proteins
-----577
21.5.2
The dual role of CIA2A in iron homeostasis
-----578
21.6
Fe-S protein assembly and the maintenance
of genomic stability
-----579
21.6.1
Late-acting CIA factors in
DNA metabolism
-----580
21.6.2
XPD and the Rad3 family of
DNA helicases-----581
21.6.3
Fe-S proteins involved in
DNA
replication
-----582
21.6.4 DNA
glycosylases as Fe-S proteins
-----583
xx ----- Contents
21.7 Biochemical
functions of Fe-S clusters in
DNA
metabolic
enzymes
-----583
21.8
Interplay among Fe-S proteins, genome stability,
and tumorigenesis
-----585
21.9
Summary
-----587
Acknowledgments
-----588
References
-----588
Hong Ye
22
Iron-sulfur cluster assembly in plants
-----599
22.1
Introduction
-----599
22.2
iron uptake,
translocation,
and distribution
-----599
22.3
Fe-S cluster
assem
bly-----
601
22.3.1
SUF
system in plastids
-----603
22.3.2
ISC system in mitochondria
-----606
22.3.3
CIA system in cytosol
-----608
22.4
Regulation of cellular iron homeostasis by Fe-S cluster
biosynthesis
-----610
22.5
Conservation of Fe-S cluster assembly genes across
the green lineage
-----610
22.6
Potential significance to agriculture
-----612
Acknowledgments
-----613
References
-----613
Eric S. Boyd,
Gerrit ).
Schut,
Eric M. Shepard,
Joan
В.
Broderick,
Michael
W. W.
Adams
and John W. Peters
23
Origin and evolution of Fe-S proteins and enzymes
___619
23.1
Introduction
-----619
23.2
Fe-S chemistry and the origin of life
-----619
23.3
The ubiquity and antiquity of biological Fe-S clusters
-----622
23.4
Early energy conversion
-----626
23.5
Evolution of complex Fe-S cluster containing proteins
-----630
23.6
The path from minerals to Fe-S proteins and enzymes
-----632
References
-----633
Index
-----637
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV041722539 |
classification_rvk | WD 5050 |
ctrlnum | (OCoLC)864557019 (DE-599)BVBBV041722539 |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01376nam a2200337 c 4500</leader><controlfield tag="001">BV041722539</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140728 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140306s2014 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110308327</subfield><subfield code="9">978-3-11-030832-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864557019</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041722539</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 5050</subfield><subfield code="0">(DE-625)148185:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Iron-sulfur clusters in chemistry and biology</subfield><subfield code="c">ed. by Tracey A. Rouault</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Iron sulfur clusters in chemistry and biology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 648 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eisen-Schwefel-Proteide</subfield><subfield code="0">(DE-588)4132650-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eisen-Schwefel-Proteide</subfield><subfield code="0">(DE-588)4132650-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rouault, Tracey A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027169488&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027169488</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV041722539 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:03:46Z |
institution | BVB |
isbn | 9783110308327 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027169488 |
oclc_num | 864557019 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-355 DE-BY-UBR DE-11 DE-19 DE-BY-UBM |
physical | XXIV, 648 S. Ill., graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | De Gruyter |
record_format | marc |
spelling | Iron-sulfur clusters in chemistry and biology ed. by Tracey A. Rouault Iron sulfur clusters in chemistry and biology Berlin [u.a.] De Gruyter 2014 XXIV, 648 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Eisen-Schwefel-Proteide (DE-588)4132650-7 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Eisen-Schwefel-Proteide (DE-588)4132650-7 s b DE-604 Rouault, Tracey A. Sonstige oth Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027169488&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Iron-sulfur clusters in chemistry and biology Eisen-Schwefel-Proteide (DE-588)4132650-7 gnd |
subject_GND | (DE-588)4132650-7 (DE-588)4143413-4 |
title | Iron-sulfur clusters in chemistry and biology |
title_alt | Iron sulfur clusters in chemistry and biology |
title_auth | Iron-sulfur clusters in chemistry and biology |
title_exact_search | Iron-sulfur clusters in chemistry and biology |
title_full | Iron-sulfur clusters in chemistry and biology ed. by Tracey A. Rouault |
title_fullStr | Iron-sulfur clusters in chemistry and biology ed. by Tracey A. Rouault |
title_full_unstemmed | Iron-sulfur clusters in chemistry and biology ed. by Tracey A. Rouault |
title_short | Iron-sulfur clusters in chemistry and biology |
title_sort | iron sulfur clusters in chemistry and biology |
topic | Eisen-Schwefel-Proteide (DE-588)4132650-7 gnd |
topic_facet | Eisen-Schwefel-Proteide Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027169488&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT rouaulttraceya ironsulfurclustersinchemistryandbiology |