Introduction to robust estimation and hypothesis testing:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier, AP
2012
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 690 S. graph. Darst. |
ISBN: | 9780123869838 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041700948 | ||
003 | DE-604 | ||
005 | 20190709 | ||
007 | t | ||
008 | 140221s2012 d||| |||| 00||| eng d | ||
020 | |a 9780123869838 |9 978-0-12-386983-8 | ||
035 | |a (OCoLC)780473460 | ||
035 | |a (DE-599)BVBBV041700948 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-521 |a DE-20 |a DE-473 | ||
050 | 0 | |a QA276.8 | |
082 | 0 | |a 519.5/44 |2 22 | |
084 | |a CM 4000 |0 (DE-625)18951: |2 rvk | ||
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a 62G35 |2 msc | ||
084 | |a 62G05 |2 msc | ||
084 | |a MAT 626f |2 stub | ||
100 | 1 | |a Wilcox, Rand R. |e Verfasser |0 (DE-588)141426241 |4 aut | |
245 | 1 | 0 | |a Introduction to robust estimation and hypothesis testing |c Rand Wilcox |
250 | |a 3. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier, AP |c 2012 | |
300 | |a XXI, 690 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Robuste Schätzung |0 (DE-588)4178265-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistischer Test |0 (DE-588)4077852-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Statistischer Test |0 (DE-588)4077852-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Robuste Schätzung |0 (DE-588)4178265-3 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027141274&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027141274 |
Datensatz im Suchindex
_version_ | 1804151968475643904 |
---|---|
adam_text | Contents
Preface
.............................................................................xix
Chapter
1
Introduction
...............................................................7
I
.
I Problems with Assuming Normality
.........................................
I
1
.2
Transformations
...............................................................5
1
.3
The Influence Curve
...........................................................7
1.4
The Central Limit Theorem
...................................................8
1.5
Is the ANOVA
F
Robust?
.....................................................9
1.6
Regression
................................................................... 10
1.7
More Remarks
............................................................... 11
1.8
Using the Computer:
R
...................................................... 11
1.9
Some Data Management Issues
............................................. 13
1.9.1
Eliminating Missing Values
......................................... 22
Chapter
2
A Foundation for Robust Methods
......................................23
2.1
Basic Tools for Judging Robustness
........................................23
2.1
Л
Qualitative Robustness
.............................................. 24
2.1.2
Infinitesimal Robustness
............................................. 27
2.1.3
Quantitative Robustness
............................................. 28
2.2
Some Measures of Location and Their Influence Function
...............29
2.2.1
Quantiles
............................................................. 29
2.2.2
The Winsorized Mean
............................................... 30
2.2.3
The Trimmed Mean
.................................................. 32
2.2.4
M-Measures of Location
............................................ 32
2.2.5
R-Measures of Location
............................................. 35
2.3
Measures of Scale
...........................................................36
2.4
Scale Equivariant M-Measures of Location
................................38
2.5
Winsorized Expected Values
................................................39
Chapter
3
Estimating Measures of Location and Scale
.............................43
3.1
A Bootstrap Estimate of a Standard Error
..................................43
3.1.1
R
Function bootse
....................................................45
СояїшяН
............46
3.2
Density Estimators
............................................
3.2.1
Normal Kernel
.......................................................
3.2.2
Rosenblatt s Shifted Histogram
.....................................
ąJ
3.2.3
The Expected Frequency Curve
..................................... 47
3.2.4
An Adaptive Kernel Estimator
......................................
48
3.2.5
R
Functions skerd, kerden, kdplot, rdplot, akerd, and
splot
.......49
3.3
The Sample Trimmed Mean
................................................
*4
3.3.
1 R Functions mean, tmean, and Hoc
................................. 57
3.3.2
Estimating the Standard Error of the Trimmed Mean
.............. 57
3.3.3
Estimating the Standard Error of the Sample Winsorized Mean
.. 62
3.3.4
R
Functions winmean, winvar, trimse, and winse
..................62
3.3.5
Estimating the Standard Error of the Sample Median,
M
..........62
3.3.6
R
Function msmedse
................................................63
3.4
The Finite Sample Breakdown Point
.......................................63
3.5
Estimating Quantiles
........................................................64
3.5.
1 Estimating the Standard Error of the Sample Quantile
............65
3.5.2
R
Function qse
.......................................................66
3.5.3
The Maritz-Jarrett Estimate of the Standard Error of xq
..........67
3.5.4
R
Function mjse
......................................................68
3.5.5
The Harrell-Davis Estimator
........................................68
3.5.6
R
Function hd
........................................................69
3.5.7
A Bootstrap Estimate of the Standard Error of
Bą
..................69
3.5.8
R
Function hdseb
.................................................... 70
3.6
An M-Estimator of Location
................................................70
3.6.
1 R Function mad
...................................................... 75
3.6.2
Computing an M-estimator of Location
............................75
3.6.3
R
Functions
mest
....................................................77
3.6.4
Estimating the Standard Error of the M-estimator
................. 78
3.6.5
R
Function mestse
................................................... 80
3.6.6
A Bootstrap Estimate of the Standard Error of
џт
................. 80
3.6.7
R
Function mestseb
.................................................. 81
3.7
One-Step M-estimator
.................................. §2
3.7.1
R
Function onestep
............................
g3
3.8
W-estimators
......................................
g3
3.8.
1 Tau Measure of Location
....................
g4
3.8.2
R
Function tauloc
........................ .........
3.8.3
Zuołs
Weighted Estimator
.....................
^
....................
^
3.9
The Hodges-Lehmann Estimator
.................. ..............
g5
3.10
Skipped Estimators
............................
g5
3.10.1
R
Functions mom and bmean
.............. ....................
3.11
Some Comparisons of the Location Estimators...^..........
..............86
Contents
3.12
More Measures of Scale
.....................................................89
3.12.1
The Biweight Midvariance
.......................................... 90
3.12.2
R
Function bivar
..................................................... 92
3.12.3
The Percentage Bend Midvariance and
tau
Measure of
Variation
..............................................................92
3.12.4
R
Functions pbvar, tauvar
........................................... 94
3.12.5
The Interquartile Range
............................................. 95
3.12.6
R
Function idealf
.................................................... 96
3.13
Some Outlier Detection Methods
........................................... 96
3.13.1
Rules Based on Means and Variances
..............................96
3.13.2
A Method Based on the Interquartile Range
.......................96
3.13.3
Carling s Modification
...............................................97
3.13.4
A MAD-Median Rule
............................................... 97
3.13.5
R
Functions outbox, out, and boxplot
...............................98
3.13.6
Skewness and the Boxplot Rule
.....................................99
3.13.7
R
Function adjboxout
...............................................100
3.14
Exercises
....................................................................100
Chapter
4
Confidence Intervals in the One-Sample Case
...........................103
4.
1 Problems when Working with Means
.....................................
1
03
4.2
The g-and-h Distribution
...................................................107
4.2.1
R
Functions ghdist and rmul
.......................................110
4.3
Inferences About the Trimmed and Winsorized Means
..................
Ill
4.3.1
R
Functions trimci and winci
....................................... 114
4.4
Basic Bootstrap Methods
...................................................115
4.4.1
The Percentile Bootstrap Method
..................................115
4.4.2
R
Function onesampb
............................................... 116
4.4.3
Bootstrap-t Method
................................................. 117
4.4.4
Bootstrap Methods when Using a Trimmed Mean
................ 118
4.4.5
Singh s Modification
................................................123
4.4.6
R
Functions trimpb and trimcibt
...................................123
4.5
Inferences About M-Estimators
...........................................124
4.5.1
R
Functions
městci
and
momci
....................................126
4.6
Confidence Intervals for Quantiles
........................................126
4.6.1
Beware of Tied Values when Using the Median
..................129
4.6.2
Alternative Method for the Median
................................130
4.6.3
R
Functions qmjci, hdci,
sint, sintv2.
qci, and qint
................131
4.7
Empirical Likelihood
.......................................................132
4.7.1
Bartlett Corrected Empirical Likelihood
..........................133
4.8
Concluding Remarks
.......................................................135
4.9
Exercises
....................................................................135
VII
Contents
137
Chapter
5
Comparing Two Croups
........................................********
5.I The Shift Function
e Shift Function
..........................................................
.
1 The
Kol
mogorov-S
mirno
v
Test
...................................
141
.2
R
Functions ks, kssig, kswsig, and kstiesig
........................144
.3
The
S
Band and
W
Band for the Shift Function
...................146
.4
R
Functions sband and wband
.....................................
!47
.5
Confidence Band for the Deciles Only
............................150
.6
R
Function shifthd
..................................................
151
.7
R
Functions g2plot and splotg2
....................................153
153
5.
5.
5.
5.
5.
5.
5.
5.2
Student s f-test
5.3
Comparing Medians and Other Trimmed Means
.........................157
5.3.1
R
Function yuen
....................................................160
5.3.2
A Bootstrap-t Method for Comparing Trimmed Means
..........161
5.3.3
R
Functions yuenbt and yhbt
.......................................163
5.3.4
Measuring Effect Size: Robust Analogs of Cohen s
d
............166
5.3.5
R
Functions akp.effect, yuenv2, and ees.ci
........................169
5.3.6
Comments on Measuring Effect Size
..............................170
5.4
Inferences Based on
a Percenti
le
Bootstrap Method
......................170
5.4.1
Comparing M-Estimators
..........................................171
5.4.2
Comparing Trimmed Means and Medians
........................172
5.4.3
R
Functions trimpb2, pb2gen, m2ci, and medpb2
................173
5.5
Comparing Measures of Scale
.............................................174
5.5.
1 Comparing Variances
...............................................174
5.5.2
R
Function comvar2
................................................175
5.5.3
Comparing Biweight Midvariances
................................176
5.5.4
R
Function b2ci
..................................................... 176
5.6
Permutation Tests
.................................. 176
5.6.1
R
Function permg
............................ 177
5.7
Inferences About a Probabilistic Measure of Effect Size
.................177
5.7.1
R
Function
mee
....................... 179
5.7.2
The Cliff and Bruner-Munzel Methods: Handling Tied Values
ľ
180
5.7.3
R
Functions
cid,
cidv2, bmp, and wmwloc
........................184
5.8
Comparing Two Independent Binomials
............. .
ľ
, 186
5.8.1
Storer-Kim Method
....... ....................
io7
5.8.2
BeaľsMethod
..... * ...........................
ÍL
5.8.3
кмѕ
Method
..............
u!!! .!!!!!!
..............................
[Il
5.8.4
R
Functions twobinom, twobici,
bi2KMS, bi2KMSv2, an d
......
................................
5.8.5
Comparing Discrete Distributions:
R
Functions binb and
...........
anddisc2com
.......................
vin
Contents
5.9
Comparing Dependent Groups
.............................................190
5.9.1
A Shift Function for Dependent Groups
...........................190
5.9.2
R
Function lband
....................................................192
5.9.3
Comparing Deciles
.................................................192
5.9.4
R
Function shiftdhd
.................................................193
5.9.5
Comparing Trimmed Means
.......................................195
5.9.6
R
Functions
y
uend and yuendv2
...................................197
5.9.7
A Bootstrap-t Method for Marginal Trimmed Means
.............198
5.9.8
R
Function ydbt
.....................................................198
5.9.9
Inferences about the Distribution of Difference Scores
...........199
5.9.10
R
Functions Ioc2dif and I2drmci
...................................200
5.9.11
Percentile Bootstrap: Comparing Medians, M-Estimators
and Other Measures of Location and Scale
........................201
5.9.12
R
Function bootdpci
................................................202
5.9.13
Handling Missing Values
...........................................203
5.9.14
R
Functions rm2miss and rmmismcp
..............................207
5.9.15
Comparing Variances
...............................................208
5.9.16
The Sign Test and Inferences about the Binomial Distribution
... 208
5.9.17
R
Functions binomci and acbinomci
...............................211
5.10
Exercises
....................................................................212
Chapter
6
Some Multivariate Methods
............................................215
6.
1 Generalized Variance
.......................................................2
1
5
6.2
Depth
........................................................................216
6.2.1
Mahalanobis Depth
.................................................216
6.2.2 Halfspace
Depth
....................................................216
6.2.3
Computing
Halfspace
Depth
.......................................218
6.2.4
R
Functions depth2, depth, fdepth, fdepthv2, and unidepth
......221
6.2.5
Projection Depth
....................................................222
6.2.6
R
functions pdis and pdisMC
......................................223
6.2.7
Other Measures of Depth
...........................................223
6.2.8
R
Function zdepth
..................................................224
6.3
Some
Affine
Equivariant Estimators
......................................224
6.3.1
Minimum Volume Ellipsoid Estimator
............................225
6.3.2
The Minimum Covariance Determinant Estimator
...............226
6.3.3
S-Estimators and Constrained M-Estimators
......................227
6.3.4
R
Function
tbs
.......................................................228
6.3.5
Donoho-Gasko Generalization of a Trimmed Mean
..............228
6.3.6
R
Functions dmean and dcov
.......................................229
6.3.7
The Stahel-Donoho W-Estimator
..................................230
IX
Contents
..................231
6.3.8
R
Function sdwe
...............................
231
6.3.9
Median Ball Algorithm
.............................................
^
6.3.10
R
Function rmba
....................................................
6.3.11
OGK Estimator
.....................................................
6.3.
1
2
R
Function ogk
......................................................
6.3.13
An
M
-Estimator
.....................................................
6.3.14
R
Function MARest
................................................
234
6.4
Multivariate Outlier Detection Methods
..................................235
6.4.1
ARelplot
............................................................
236
6.4.2
R
Function relplot
...................................................
23δ
6.4.3
The MVE Method
..................................................
239
6.4.4
The MCD Method
..................................................239
6.4.5
R
Functions covmve andcovmcd
..................................239
6.4.6
R
function out
.......................................................240
6.4.7
The MGV Method
..................................................241
6.4.8
R
Function outmgv
.................................................243
6.4.9
A Projection Method
...............................................244
6.4.10
R
functions outpro and out3d
......................................246
6.4.11
Outlier Identification in High Dimensions
.........................247
6.4.
1
2
R
Function outproad and outmgvad
...............................247
6.4.
1
3
Approaches Based on Geometric Quantiles
.......................248
6.4.14
Comments on Choosing a Method
.................................248
6.5
A Skipped Estimator of Location and Scatter
.............................250
6.5.1
R
Functions smean, wmcd, wmve, mgvmean, Llmedcen,
spat, mgvcov, skip, skipcov, and dcov
.............................252
6.6
Robust Generalized Variance
..............................................254
6.6.1
R
Function gvarg
................................... 255
6.7
Inference in the One-Sample Case
............................. 255
6.7.1
Inferences Based on the OP Measure of Location
................255
6.7.2
Extension of Hotelling s T2 to Trimmed Means
..................256
6.7.3
R
Functions smeancrv2 and hotell.tr
............... 257
6.7.4
Inferences Based on the MGV Estimator
..........................259
6.7.5
R
Function smg
ver
...................... 259
6.8
Two-Sample Case
............................... 259
6.8.1
R
Functionssmean2, smean2v2,
matsplit,
and mat2grp
.....ľ...
260
6.8.2
Comparing Robust Generalized Variances
................262
6.8.3
R
function gvar2g
.................... ...........
6.9
Multivariate Density Estimators
............... .....................262
6.10
A Two-Sample, Projection-Type Extension of the
*
^ ^
Wilcoxon-Mann-Whitney Test
.................. 263
6.10.1
R
fonctions
mul
wmw and mulwmwv2
.........
ľ.
........ .......265
Contents
6.11
A
Relative
Depth
Analog
of the Wilcoxon-Mann-Whitney Test
........267
6.
1
1.1
R
function mwmw
..................................................268
6.12
Comparisons Based on Depth
..............................................269
6.12.1
R
Functions Isqs3 and depthg2
.....................................272
6.13
Comparing Dependent Groups Based on All Pairwise Differences
......275
6.13.1
R
Function dfried
...................................................277
6.14
Robust Principal Components Analysis
...................................277
6.14.1
R
Functions prcomp and regpca
...................................279
6.14.2
Maronna s Method
..................................................279
6.14.3
The SPCA Method
..................................................280
6.14.4
Method HRVB
......................................................280
6.14.5
Method OP
..........................................................281
6.14.6
Method PPCA
.......................................................281
6.14.7
R
Functions outpca, robpca, robpcaS, SPCA, Ppca, and
Ppca.summary
.......................................................282
6.14.8
Comments on Choosing the Number of Components
.............283
6.15
Cluster Analysis
............................................................287
6.15.1
R
Functions Kmeans, kmeans.grp, TKmeans, and
TKmeans.grp
........................................................288
6.16
Exercises
....................................................................288
Chapter
7
One-Way and Higher Designs for Independent Groups
.................291
7.
1 Trimmed Means and a One-Way Design
..................................292
7.
1
.
1 A Welch-Type Procedure and a Robust Measure of Effect Size.
. 293
7.
1
.2
R
Functions
1
1 way,
1
1 way v2, esmcp, fac2list, and
1
1 wayF
.......295
7.
1
.3
A Generalization of Box s Method
................................298
7.
1
.4
R
Function box I way
................................................299
7.
1
.5
Comparing Medians
................................................300
7.1.6
R
Function
med
1
way
...............................................301
7.1.7
A Bootstrap-t method
...............................................301
7.1.8
R
Functions
1
1
waybt and btrim
....................................302
7.1.9
Percentile Bootstrap Methods
......................................304
7.2
Two-Way Designs and Trimmed Means
..................................304
7.2.
1 R Functions t2way
..................................................308
7.2.2
Comparing Medians
................................................310
7.2.3
R
Function med2way
...............................................311
7.3
Three-Way Designs and Trimmed Means
.................................311
7.3.1
R
Functions t3way and fac2list
....................................313
7.4
Multiple Comparisons Based on Medians and Other Trimmed Means
..316
7.4.1
An Extension of Yuen s Method to Trimmed Means
.............317
7.4.2
R
Function lincon
...................................................319
xi
Contants
7.4.3
Multiple
Comparisons for Two-way and Three-Way
_ ..............·.........··.·
ÒLL
Designs
.....................................
7.4.4
R
Functions mcp2atm, mcp2med, mcp3atm, mcp3med,
соп2
way, and
сопЗ
way
............................................
7.4.5
A Bootstrap-t Procedure
............................................
325
7.4.6
R
Functions linconb, bbtrim, and bbbtrim
.........................327
7.4.7
Percentik
Bootstrap Methods for Comparing Medians and
Other Trimmed Means
..............................................
329
7.4.8
R
Functions tmcppb, bbmcppb, bbbmcppb, medpb,
med2mcp, med3mcp, and mcppb20
................................331
7.4.9
Judging Sample Sizes
...............................................333
7.4.10
R
Function hochberg
................................................334
7.4.1
1 Explanatory Measure of Effect Size
...............................335
7.4.12
R
Functions ESmainMCP andeslmcp
.............................335
7.5
A Random Effects Model for Trimmed Means
...........................336
7.5.1
A Winsorized Intraclass Correlation
...............................338
7.5.2
R
Function rananova
................................................339
7.6
Global Tests Based on M-Measures of Location
.........................340
7.6.1
R
Functions
b
1
way and pbadepth
..................................343
7.6.2
M-estimators and Multiple Comparisons
..........................344
7.6.3
R
Functions linconm and pbmcp
...................................347
7.6.4
M-Estimators and the Random Effects Model
....................348
7.6.5
Other Methods for One-Way Designs
.............................348
7.7
M-Measures of Location and a Two-Way Design
........................348
7.7.
1 R Functions pbad2way and mcp2a
.................................351
7.8
Ranked-Based Methods for a One-Way Design
..........................351
7.8.1
The Rust-Fligner Method
.............................. 352
7.8.2
R
Function rfanova
..................... 353
7.8.3
A Heteroscedastic Rank-Based Method that Allows
Tied Values
.......................... 354
7.8.4
RFunctionbdm
...................... .....................354
7.8.5
Inferences about a Probabilistic Measure of Effect Size
. . . ! . 356
7.8.6
R
Functions cidmulv2, wmwaov and cidM
358
7.9
A Rank-Based Method for a Two-Way Design...
...................359
7.9.1
R
Function bdm2way
............. ........................351
7.9.2
The Patel-Hoel Approach to interactions
...... . . . . . sei
7.9.3
R
Function
rimu
I
...... .....................
~¿2
7.10
MÁNOVA
Based on Trimmed Means
.............. ........................
З6З
7.10.1
R
Functions MULtr.anova, MULAOVn
bw2Hsť
and
..............
YYmanova
.......
r
7.10.2
Linear Contrasts
. .......................................... ,1
................................................367
Xii
Contents
7.10.3
R
Functions linconMpb, linconSpb, YYmcp, fac2Mlist,
and fac2BBMlist
....................................................369
7.1
1 Nested Designs
.............................................................371
7.11.1
R
Functions anova.nestA, mcp.nestA, and anova.nestAP
........374
7.12
Exercises
....................................................................374
Chapter
8
Comparing Multiple Dependent Croups
................................379
8.1
Comparing Trimmed Means
...............................................379
8.1.1
Omnibus Test Based on the Trimmed Means of the
Marginal Distributions
..............................................380
8.1.2
R
Function rmanova
................................................380
8.1.3
Pairwise Comparisons and Linear Contrasts Based on
Trimmed Means
.....................................................381
8.1.4
Linear Contrasts Based on the Marginal Random Variables
......384
8.1.5
R
Function rmmcp and rmmismcp
.................................385
8.1.6
Judging the Sample Size
............................................386
8.1.7
R
Functions stein
1
.tr and stein2.tr
.................................387
8.2
Bootstrap Methods Based on Marginal Distributions
....................387
8.2.1
Comparing Trimmed Means
.......................................387
8.2.2
R
Function rmanovab
...............................................388
8.2.3
Multiple Comparisons Based on Trimmed Means
................388
8.2.4
R
Functions pairdepb and bptd
.....................................390
8.2.5
Percentile Bootstrap Methods
......................................392
8.2.6
R
Functions bdlway and ddep
.....................................394
8.2.7
Multiple Comparisons Using M-estimators or Skipped
Estimators
...........................................................395
8.2.8
R
Functions lindm and mcpOV
....................................397
8.3
Bootstrap Methods Based on Difference Scores
..........................398
8.3.1
R
Function rmdzero
.................................................400
8.3.2
Multiple Comparisons
..............................................400
8.3.3
R
Functions rmmcppb, wmcppb, dmedpb, and lindepbt
..........402
8.4
Comments on which Method to Use
......................................404
8.5
Some Rank-Based Methods
................................................406
8.5.1
R
Functions apanova and bprm
....................................408
8.6
Between-by-Within and Within-by-Within Designs
......................408
8.6.1
Analyzing a Between-by-Within Design Based on
Trimmed Means
.....................................................408
8.6.2
R
Functions bwtrim and tsplit
......................................410
8.6.3
Data Management:
R
Function bw21ist
............................412
8.6.4
Bootstrap-t Method for a Between-by-Within Design
............413
8.6.5
R
Functions bwtrimbt and tsplitbt
.................................414
xiii
Contents
8 6 6
Percentile Bootstrap Methods for a Between-by-Within
Design
...............................................................414
8.6.7
R
Functions sppba, sppbb, and sppbi
..............................
41
8.6.8
Multiple Comparisons
..............................................
4
!
8
8.6.9
R
Functions bwmcp, bwamcp, bwbmcp, bwimcp, spmcpa,
spmcpb, and spmcpi
.................................................421
8.6.10
Within-by-Within Designs
.........................................
422
8.6.
1
1
R
Functions wwtrim, wwtrimbt, wwmcppb, and wwmcpbt
......423
8.6.
1
2
A Rank-Based Approach
...........................................423
8.6.13
R
Function bwrank
.................................................427
8.6.14
Rank-Based Multiple Comparisons
................................429
8.6.15
R
Function bwrmcp
.................................................429
8.6.16
Multiple Comparisons when Using a Patel-Hoel Approach
to Interactions
.......................................................429
8.6.17
R
Function sisplit
...................................................431
8.7
Some Rank-Based Multivariate Methods
.................................431
8.7.1
The Munzel-Brunner Method
......................................431
8.7.2
R
Function mulrank
.................................................433
8.7.3
The Choi-Marden Multivariate Rank Test
........................434
8.7.4
R
Function cmanova
................................................435
8.8
Three-Way Designs
........................................................436
8.8.1
Global Tests Based on Trimmed Means
...........................436
8.8.2
R
Functions bbwtrim, bwwtrim, wwwtrim, bbwtrimbt,
bwwtrimbt, and wwwtrimbt
........................................437
8.8.3
Data Management:
R
Functions bw21ist and bbw21ist
............437
8.8.4
Multiple Comparisons
..............................................438
8.8.5
R
Function
гтЗтср
.................................................439
8.8.6
R
Functions bbwmcp, bwwmcp, bbwmcppb, bwwmcppb,
and wwwmcppb
............................................ 439
8.9
Exercises
....................................................... 440
OmpUr9 Correlation and Tests of Independence
.................................441
9.
1 Problems with the Product Moment Correlation
..........................
44I
9.
1.1 Features of Data that Affect
r
and
Γ
.......................... 444
9.
1.
2
Heteroscedasticity and the Classic Test that
ρ
= 0............... 445
9.2
Two Types of Robust Correlations
........................................ 446
9.3
Some Type M-Measures of Correlation
..................
!.ľ.ľ. ..ľ, ľ.
І446
9.3.
1 The Percentage Bend Correlation
....................... 446
9.3.2
A Test of Independence Based on ppb
...............* 447
9.3.3
R
Functionpbcor
...................................................
9.3.4
A Test of Zero Correlation among
p
Random Variables
.....! .... . 449
XIV
Contents
9.3.5
R
Function
pball....................................................451
9.3.6
The Winsorized Correlation
........................................452
9.3.7
R
Functions wincor and winall
.....................................453
9.3.8
The Biweight Midcovariance
......................................454
9.3.9
R
Functions bicov and bicovm
.....................................455
9.3.10
Kendall s
tau........................................................456
9.3.11
Spearman s rho
......................................................457
9.3.12
R
Functions
tau,
spear, cor, and taureg
............................457
9.3.13
Heteroscedastic Tests of Zero Correlation
.........................458
9.3.14
R
Functions
corb, pcorb,
and pcorhc4
.............................459
9.4
Some Type
О
Correlations
.................................................460
9.4.1
MVE and MCD Correlations
.......................................460
9.4.2
Skipped Measures of Correlation
..................................460
9.4.3
The OP Correlation
.................................................461
9.4.4
Inferences Based on Multiple Skipped Correlations
..............461
9.4.5
R
Functions
scor
and mscor
........................................463
9.5
A Test of Independence Sensitive to Curvature
...........................464
9.5.1
R
Functions indt, indtall, and medind
..............................466
9.6
Comparing Correlations: Independent Case
..............................467
9.6.1
Comparing Pearson Correlations
...................................467
9.6.2
Comparing Robust Correlations
...................................468
9.6.3
R
Functions twopcor and twocor
...................................468
9.7
Exercises
....................................................................468
Chapter
10
Robust Regression
....................................................471
10.
1 Problems with Ordinary Least Squares
....................................472
1
0.
1
.
1 Computing Confidence Intervals under Heteroscedasticity
.......475
10.1.2 An Omnibus Test
...................................................479
1
0.
1
.3
R
Functions isfitNci, Isfitci, olshc4, hc4test, and hc4wtest
.......480
1
0.
1
.4
Comments on Comparing Means via Dummy Coding
...........483
10.
1
.5
Comments on Trying to Salvage the Homoscedasticity
Assumption
..........................................................483
10.2
Theil-Sen Estimator
........................................................484
10.2.1
R
Functions tsreg, correg, and regplot
.............................486
10.3
Least Median of Squares
...................................................487
10.3.1
R
Function lmsreg
..................................................487
10.4
Least Trimmed Squares Estimator
.........................................488
10.4.1
R
Functions ltsreg and Itsgreg
......................................488
10.5
Least Trimmed Absolute Value Estimator
................................488
10.5.1
R
Function Itareg
...................................................489
10.6
M-Estimators
...............................................................489
XV
Contents
10.7
The Hat Matrix
............................................................
10.8
Generalized M-Estimators
................................................
10.8.1
R
Function bmreg
..................................................
10.9
The Coakley-Hettmansperger and Yohai Estimators
.....................498
10.9.1
MM-Estimator
......................................................
4
10.9.2
R
Functions chreg and MMreg
.....................................500
10.10
Skipped Estimators
.........................................................500
1
0.10.
1 R Functions mgvreg and opreg
.....................................501
10.11
Deepest Regression Line
...................................................502
10.11.1
R
Function mdepreg
................................................502
10.12
A Criticism of Methods with a High Breakdown Point
..................503
10.13
Some Additional Estimators
...............................................503
10.13.1
S-Estimators and r-Estimators
.....................................503
10.
1
3.2
R
Functions snmreg and stsreg
.....................................504
10.13.3
E
-Туре
Skipped Estimators
........................................505
10.13.4
R
Functions mbmreg, tstsreg, and gyreg
..........................506
10.13.5
Methods Based on Robust Covariances
...........................507
10.13.6
R
Functions bireg, winreg, and COVreg
...........................509
10.13.7
L-Estimators
........................................................510
10.13.8
L
,
and Quantile Regression
........................................510
10.13.9
R
Functions qreg and rqfit
..........................................511
10.
1
3.10
Methods Based on Estimates of the Optimal Weights
............511
10.13.11
Projection Estimators
...............................................512
10.13.12
Methods Based on Ranks
...........................................513
10.14
Comments About Various Estimators
.....................................514
10.14.1
Contamination Bias
.................................................515
10.15
Outlier Detection Based on a Robust Fit
..................................520
10.15.1
Detecting Regression Outliers
.....................................520
1
0.15.2
R
Function reglev
...................................................521
10.16
Logistic Regression and the General Linear Model
......................522
1
0.16.1
R
Functions glm, logreg, wlogreg, and logreg.plot
...............523
10.
1
6.2
The General Linear Model
.........................................524
10.16.3
R
Function glmrob
........................................ 525
10.17
Multivariate Regression
................................... 525
10.17.1
The
RADA
Estimator
..................
///.^........ï.ï............
526
10.
1
7.2
The Least Distance Estimator
............................
527
10.17.3
R
Functions mlrreg and Mreglde
....................... ! 528
10.
1
7.4
Multivariate Least Trimmed Squares Estimator.
529
10.17.5
R
Function MULTtsreg
............................ .530
10.17.6
Other Robust Estimators
.................. ! !! 530
10.
1
8
Exercises
......................... .................
XVI
Contents
Chapter
11
More Regression Methods
............................................533
1
1.1
Inferences About Robust Regression Parameters
.........................533
11.2
11.3
11.4
11.5
11.6
1
.1.1
,1.2
.1.3
.1.4
.1.5
,1.6
11.1.7
11.1.8
11.1.9
11.1.10
11.1.11
Omnibus Tests for Regression Parameters
........................534
R
Function
regtest..................................................538
Inferences About Individual Parameters
...........................539
R
Functions regci and wlogregci
...................................541
Methods Based on the Quantile Regression Estimator
...........543
R
Functions rqtest, qregci, and qrchk
..............................544
Inferences Based on the OP-Estimator
............................545
R
Functions opregpb and opregpbMC
.............................546
Hypothesis Testing when Using the Multivariate
Regression Estimator
RADA
.......................................547
R
Function mlrGtest
................................................548
Robust ANOVA via Dummy Coding
..............................549
Comparing the Parameters of Two Independent Groups
.................549
11.2.1
R
Function reg2ci
...................................................551
Detecting Heteroscedasticity
...............................................553
11.3.1
A Quantile Regression Approach
..................................553
11.3.2
Koenker s Method
..................................................554
11.3.3
R
Functions qhomt and khomreg
..................................555
Curvature and Half-Slope Ratios
..........................................555
11.4.1
R
Function hratio
...................................................556
Curvature and Nonparametric Regression
................................558
11.5.1
Smoothers
...........................................................558
11.5.2
Kernel Estimators and Cleveland s LOWESS
.....................559
11.5.3
R
Functions Iplot and kerreg
.......................................561
11.5.4
The Running Interval Smoother
....................................561
11.5.5
R
Functions runmean, rungen, runmbo, and
runhat...............566
.5.6
Skipped Smoothers
.................................................569
.5.7
Smoothers for Estimating Quantiles via Splines
..................569
.5.8
R
Function qsmcobs
................................................570
.5.9
Special Methods for Binary Outcomes
............................570
.5.10
R
Functions logrsm bkreg, logSM, and rplot.bin
..................572
.5.11
Smoothing with More than One Predictor
.........................573
11.5.12
R
Functions runm3d, run3hat, rung3d, run3bo, rung3hat,
rplot, rplotsm, and runpd
............................................574
11.5.13
LOESS
..............................................................578
11.5.14
Other Approaches
...................................................581
11.5.15
R
Function adrun, adrunl, gamplot, and gamplotINT
.............583
Checking the Specification of a Regression Model
.......................584
Π
.6.1
Testing the Hypothesis of a Linear Association
...................585
1
XVII
Contents
___________________________________
CQf.
11.6.2
R
Function lintest
...................................·······.........
11
.6.3
Testing the Hypothesis of a Generalized Additive Model
........586
11.6.4
R
Function adtest
...................................................
587
1
1.6.5
Inferences About the Components of a Generalized
Additive Model
......................................................
588
11.6.6
R
Function adcom
..................................................
588
1
1.7
Regression Interactions and Moderator Analysis
.........................589
U
.7.1
R
Functions kercon, riplot, runsm2g, ols.plot.mter, and
reg.plot.inter
.........................................................591
1
1.7.2
Mediation Analysis
.................................................594
1
1
.7.3
R
functions ZYmediate, regmed2, and regmediate
...............596
1
1
.8
Comparing Parametric, Additive, and Nonparametric Fits
...............596
11.8.1
R
Functions adpchk and pmodchk
.................................597
1
1.9
Measuring the Strength of an Association Given a Fit to the Data
......598
It.
9.1
R
Function RobRsq
.................................................600
1
1.9.2
Comparing Two Independent Groups via Explanatory Power.
... 600
11.9.3
R
Functions smcorcom and smstrcom
.............................601
11.10
Comparing Predictors
.....................................................601
11.10.1
Comparing Pearson Correlations
...................................602
1
1
.10.2
Methods Based on Estimating Prediction Error
...................603
11.10.3
R
Functions TWOpov, regpre, andregpreCV
.....................605
11.10.4
R
Function larsR
....................................................607
11.10.5
Comparing Predictors via Explanatory Power and a
Robust Fit
............................................................607
11.10.6
R
Functions ts2str and sm2strv7
...................................608
It.
11
ANCOVA
...................................................................609
11.II.I Methods Based on Specific Design Points
........................610
11.11.2
R
Functions ancova, ancpb, runmean2g, Iplot2g, ancboot,
ancbbpb, and cobs2g
................................................613
11
.
11
.3
Multiple Covariates
.................................................618
1
1.
11
.4
R
Functions ancdes, ancovamp, ancmppb, and ancmg
...........619
1
1.
II
.5
Some Global Tests
..................................................620
11.11.6
R
Functions ancsm and Qancsm
...................................624
11.12
Marginal Longitudinal Data Analysis: Comments on Comparing
Groups
.......................................................................
624
11
.
1
2.
1 R Functions Iong2g, longreg, longreg.plot, and xyplot
...........626
11.13
Exercises
..........................................
........................................................................631
*■*·..............................................................................687
xvin
|
any_adam_object | 1 |
author | Wilcox, Rand R. |
author_GND | (DE-588)141426241 |
author_facet | Wilcox, Rand R. |
author_role | aut |
author_sort | Wilcox, Rand R. |
author_variant | r r w rr rrw |
building | Verbundindex |
bvnumber | BV041700948 |
callnumber-first | Q - Science |
callnumber-label | QA276 |
callnumber-raw | QA276.8 |
callnumber-search | QA276.8 |
callnumber-sort | QA 3276.8 |
callnumber-subject | QA - Mathematics |
classification_rvk | CM 4000 QH 233 SK 830 |
classification_tum | MAT 626f |
ctrlnum | (OCoLC)780473460 (DE-599)BVBBV041700948 |
dewey-full | 519.5/44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/44 |
dewey-search | 519.5/44 |
dewey-sort | 3519.5 244 |
dewey-tens | 510 - Mathematics |
discipline | Psychologie Mathematik Wirtschaftswissenschaften |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01654nam a2200445 c 4500</leader><controlfield tag="001">BV041700948</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190709 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140221s2012 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123869838</subfield><subfield code="9">978-0-12-386983-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)780473460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041700948</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA276.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/44</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 4000</subfield><subfield code="0">(DE-625)18951:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62G35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62G05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 626f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wilcox, Rand R.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141426241</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to robust estimation and hypothesis testing</subfield><subfield code="c">Rand Wilcox</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier, AP</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 690 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Robuste Schätzung</subfield><subfield code="0">(DE-588)4178265-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistischer Test</subfield><subfield code="0">(DE-588)4077852-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistischer Test</subfield><subfield code="0">(DE-588)4077852-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Robuste Schätzung</subfield><subfield code="0">(DE-588)4178265-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027141274&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027141274</subfield></datafield></record></collection> |
id | DE-604.BV041700948 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:03:15Z |
institution | BVB |
isbn | 9780123869838 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027141274 |
oclc_num | 780473460 |
open_access_boolean | |
owner | DE-83 DE-521 DE-20 DE-473 DE-BY-UBG |
owner_facet | DE-83 DE-521 DE-20 DE-473 DE-BY-UBG |
physical | XXI, 690 S. graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Elsevier, AP |
record_format | marc |
spelling | Wilcox, Rand R. Verfasser (DE-588)141426241 aut Introduction to robust estimation and hypothesis testing Rand Wilcox 3. ed. Amsterdam [u.a.] Elsevier, AP 2012 XXI, 690 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Robuste Schätzung (DE-588)4178265-3 gnd rswk-swf Statistischer Test (DE-588)4077852-6 gnd rswk-swf Statistischer Test (DE-588)4077852-6 s DE-604 Robuste Schätzung (DE-588)4178265-3 s Digitalisierung UB Bamberg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027141274&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wilcox, Rand R. Introduction to robust estimation and hypothesis testing Robuste Schätzung (DE-588)4178265-3 gnd Statistischer Test (DE-588)4077852-6 gnd |
subject_GND | (DE-588)4178265-3 (DE-588)4077852-6 |
title | Introduction to robust estimation and hypothesis testing |
title_auth | Introduction to robust estimation and hypothesis testing |
title_exact_search | Introduction to robust estimation and hypothesis testing |
title_full | Introduction to robust estimation and hypothesis testing Rand Wilcox |
title_fullStr | Introduction to robust estimation and hypothesis testing Rand Wilcox |
title_full_unstemmed | Introduction to robust estimation and hypothesis testing Rand Wilcox |
title_short | Introduction to robust estimation and hypothesis testing |
title_sort | introduction to robust estimation and hypothesis testing |
topic | Robuste Schätzung (DE-588)4178265-3 gnd Statistischer Test (DE-588)4077852-6 gnd |
topic_facet | Robuste Schätzung Statistischer Test |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027141274&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wilcoxrandr introductiontorobustestimationandhypothesistesting |