Poiesis and enchantment in topological matter:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
MIT Press
[2013]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XIX, 363 S. Ill. |
ISBN: | 9780262019514 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV041696817 | ||
003 | DE-604 | ||
005 | 20170927 | ||
007 | t | ||
008 | 140220s2013 xxua||| |||| 00||| eng d | ||
010 | |a 2013005784 | ||
020 | |a 9780262019514 |c hardcover : alk. paper |9 978-0-262-01951-4 | ||
035 | |a (OCoLC)830837472 | ||
035 | |a (DE-599)BVBBV041696817 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-12 |a DE-255 |a DE-11 | ||
050 | 0 | |a N72.M3 | |
082 | 0 | |a 701/.51 | |
084 | |a LI 99999 |0 (DE-625)97471: |2 rvk | ||
100 | 1 | |a Sha, Xin Wei |e Verfasser |0 (DE-588)1049204115 |4 aut | |
245 | 1 | 0 | |a Poiesis and enchantment in topological matter |c Sha Xin Wei |
264 | 1 | |a Cambridge [u.a.] |b MIT Press |c [2013] | |
300 | |a XIX, 363 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
600 | 1 | 7 | |a Sha, Xin Wei |0 (DE-588)1049204115 |2 gnd |9 rswk-swf |
650 | 4 | |a Kunst | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Art |x Mathematics | |
650 | 4 | |a New media art | |
650 | 4 | |a Topology | |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Medienkunst |0 (DE-588)4113418-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sha, Xin Wei |0 (DE-588)1049204115 |D p |
689 | 0 | 1 | |a Medienkunst |0 (DE-588)4113418-7 |D s |
689 | 0 | 2 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027137232&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027137232 |
Datensatz im Suchindex
_version_ | 1811019314219712512 |
---|---|
adam_text |
POIESIS AND ENCHANTMENT IN TOPOLOGICAL MATTER
/ SHA, XIN WEI
: 2013
TABLE OF CONTENTS / INHALTSVERZEICHNIS
INTRODUCTION: WHY THIS BOOK?
FROM TECHNOLOGIES OF REPRESENTATION TO TECHNOLOGIES OF PERFORMANCE
PERFORMANCE IN RESPONSIVE ENVIRONMENTS, THE PERFORMATIVE EVENT
SUBSTRATE
MORPHOGENESIS
TOPOLOGY, MANIFOLDS, DYNAMICAL SYSTEMS, MEASURE, AND BUNDLES
PRACTICES: APPARATUS AND ATELIER
EFFECTS.
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT. |
any_adam_object | 1 |
author | Sha, Xin Wei |
author_GND | (DE-588)1049204115 |
author_facet | Sha, Xin Wei |
author_role | aut |
author_sort | Sha, Xin Wei |
author_variant | x w s xw xws |
building | Verbundindex |
bvnumber | BV041696817 |
callnumber-first | N - Fine Arts |
callnumber-label | N72 |
callnumber-raw | N72.M3 |
callnumber-search | N72.M3 |
callnumber-sort | N 272 M3 |
callnumber-subject | N - Visual Arts |
classification_rvk | LI 99999 |
ctrlnum | (OCoLC)830837472 (DE-599)BVBBV041696817 |
dewey-full | 701/.51 |
dewey-hundreds | 700 - The arts |
dewey-ones | 701 - Philosophy of fine & decorative arts |
dewey-raw | 701/.51 |
dewey-search | 701/.51 |
dewey-sort | 3701 251 |
dewey-tens | 700 - The arts |
discipline | Kunstgeschichte |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV041696817</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170927</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140220s2013 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2013005784</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262019514</subfield><subfield code="c">hardcover : alk. paper</subfield><subfield code="9">978-0-262-01951-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)830837472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041696817</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-255</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">N72.M3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">701/.51</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LI 99999</subfield><subfield code="0">(DE-625)97471:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sha, Xin Wei</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1049204115</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Poiesis and enchantment in topological matter</subfield><subfield code="c">Sha Xin Wei</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">MIT Press</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 363 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Sha, Xin Wei</subfield><subfield code="0">(DE-588)1049204115</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kunst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Art</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">New media art</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Medienkunst</subfield><subfield code="0">(DE-588)4113418-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sha, Xin Wei</subfield><subfield code="0">(DE-588)1049204115</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Medienkunst</subfield><subfield code="0">(DE-588)4113418-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027137232&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027137232</subfield></datafield></record></collection> |
id | DE-604.BV041696817 |
illustrated | Illustrated |
indexdate | 2024-09-23T20:16:46Z |
institution | BVB |
isbn | 9780262019514 |
language | English |
lccn | 2013005784 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027137232 |
oclc_num | 830837472 |
open_access_boolean | |
owner | DE-12 DE-255 DE-11 |
owner_facet | DE-12 DE-255 DE-11 |
physical | XIX, 363 S. Ill. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | MIT Press |
record_format | marc |
spelling | Sha, Xin Wei Verfasser (DE-588)1049204115 aut Poiesis and enchantment in topological matter Sha Xin Wei Cambridge [u.a.] MIT Press [2013] XIX, 363 S. Ill. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Sha, Xin Wei (DE-588)1049204115 gnd rswk-swf Kunst Mathematik Art Mathematics New media art Topology Topologie (DE-588)4060425-1 gnd rswk-swf Medienkunst (DE-588)4113418-7 gnd rswk-swf Sha, Xin Wei (DE-588)1049204115 p Medienkunst (DE-588)4113418-7 s Topologie (DE-588)4060425-1 s DE-604 LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027137232&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sha, Xin Wei Poiesis and enchantment in topological matter Sha, Xin Wei (DE-588)1049204115 gnd Kunst Mathematik Art Mathematics New media art Topology Topologie (DE-588)4060425-1 gnd Medienkunst (DE-588)4113418-7 gnd |
subject_GND | (DE-588)1049204115 (DE-588)4060425-1 (DE-588)4113418-7 |
title | Poiesis and enchantment in topological matter |
title_auth | Poiesis and enchantment in topological matter |
title_exact_search | Poiesis and enchantment in topological matter |
title_full | Poiesis and enchantment in topological matter Sha Xin Wei |
title_fullStr | Poiesis and enchantment in topological matter Sha Xin Wei |
title_full_unstemmed | Poiesis and enchantment in topological matter Sha Xin Wei |
title_short | Poiesis and enchantment in topological matter |
title_sort | poiesis and enchantment in topological matter |
topic | Sha, Xin Wei (DE-588)1049204115 gnd Kunst Mathematik Art Mathematics New media art Topology Topologie (DE-588)4060425-1 gnd Medienkunst (DE-588)4113418-7 gnd |
topic_facet | Sha, Xin Wei Kunst Mathematik Art Mathematics New media art Topology Topologie Medienkunst |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027137232&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT shaxinwei poiesisandenchantmentintopologicalmatter |