Nevanlinna theory in several complex variables and diophantine approximation:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Tokyo [u.a.]
Springer
2014
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften
350 |
Schlagworte: | |
Online-Zugang: | DE-634 DE-861 DE-91 DE-384 DE-19 DE-703 DE-20 DE-739 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource (XIV, 416 S.) |
ISBN: | 9784431545705 9784431545712 |
DOI: | 10.1007/978-4-431-54571-2 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV041645182 | ||
003 | DE-604 | ||
005 | 20240626 | ||
007 | cr|uuu---uuuuu | ||
008 | 140212s2014 |||| o||u| ||||||eng d | ||
020 | |a 9784431545705 |c geb. |9 978-4-431-54570-5 | ||
020 | |a 9784431545712 |c online |9 978-4-431-54571-2 | ||
024 | 7 | |a 10.1007/978-4-431-54571-2 |2 doi | |
035 | |a (OCoLC)869870483 | ||
035 | |a (DE-599)BVBBV041645182 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 |a DE-739 |a DE-20 |a DE-19 |a DE-634 |a DE-861 |a DE-384 |a DE-83 | ||
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Noguchi, Junjiro |d 1948- |e Verfasser |0 (DE-588)172286816 |4 aut | |
245 | 1 | 0 | |a Nevanlinna theory in several complex variables and diophantine approximation |c Junjiro Noguchi ; Jörg Winkelmann |
264 | 1 | |a Tokyo [u.a.] |b Springer |c 2014 | |
300 | |a 1 Online-Ressource (XIV, 416 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Grundlehren der mathematischen Wissenschaften |v 350 | |
650 | 0 | 7 | |a Nevanlinna-Theorie |0 (DE-588)4239989-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diophantische Approximation |0 (DE-588)4135760-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nevanlinna-Theorie |0 (DE-588)4239989-0 |D s |
689 | 0 | 1 | |a Diophantische Approximation |0 (DE-588)4135760-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Winkelmann, Jörg |d 1963- |e Verfasser |0 (DE-588)133717615 |4 aut | |
830 | 0 | |a Grundlehren der mathematischen Wissenschaften |v 350 |w (DE-604)BV049758308 |9 350 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-4-431-54571-2 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027085906&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027085906&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
966 | e | |u https://doi.org/10.1007/978-4-431-54571-2 |l DE-634 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-54571-2 |l DE-861 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-54571-2 |l DE-91 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-54571-2 |l DE-384 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-54571-2 |l DE-19 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-54571-2 |l DE-703 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-54571-2 |l DE-20 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-54571-2 |l DE-739 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805079050332405760 |
---|---|
adam_text |
NEVANLINNA THEORY IN SEVERAL COMPLEX VARIABLES AND DIOPHANTINE
APPROXIMATION
/ NOGUCHI, JUNJIRO
: 2014
TABLE OF CONTENTS / INHALTSVERZEICHNIS
NEVANLINNA THEORY OF MEROMORPHIC FUNCTIONS
FIRST MAIN THEOREM
DIFFERENTIABLY NON-DEGENERATE MEROMORPHIC MAPS
ENTIRE CURVES INTO ALGEBRAIC VARIETIES
SEMI-ABELIAN VARIETIES
ENTIRE CURVES INTO SEMI-ABELIAN VARIETIES
KOBAYASHI HYPERBOLICITY
NEVANLINNA THEORY OVER FUNCTION FIELDS
DIOPHANTINE APPROXIMATION
BIBLIOGRAPHY
INDEX
SYMBOLS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
NEVANLINNA THEORY IN SEVERAL COMPLEX VARIABLES AND DIOPHANTINE
APPROXIMATION
/ NOGUCHI, JUNJIRO
: 2014
ABSTRACT / INHALTSTEXT
THE AIM OF THIS BOOK IS TO PROVIDE A COMPREHENSIVE ACCOUNT OF HIGHER
DIMENSIONAL NEVANLINNA THEORY AND ITS RELATIONS WITH DIOPHANTINE
APPROXIMATION THEORY FOR GRADUATE STUDENTS AND INTERESTED RESEARCHERS.
THIS BOOK WITH NINE CHAPTERS SYSTEMATICALLY DESCRIBES NEVANLINNA THEORY
OF MEROMORPHIC MAPS BETWEEN ALGEBRAIC VARIETIES OR COMPLEX SPACES,
BUILDING UP FROM THE CLASSICAL THEORY OF MEROMORPHIC FUNCTIONS ON THE
COMPLEX PLANE WITH FULL PROOFS IN CHAP. 1 TO THE CURRENT STATE OF
RESEARCH. CHAPTER 2 PRESENTS THE FIRST MAIN THEOREM FOR COHERENT IDEAL
SHEAVES IN A VERY GENERAL FORM. WITH THE PREPARATION OF PLURISUBHARMONIC
FUNCTIONS, HOW THE THEORY TO BE GENERALIZED IN A HIGHER DIMENSION IS
DESCRIBED. IN CHAP. 3 THE SECOND MAIN THEOREM FOR DIFFERENTIABLY
NON-DEGENERATE MEROMORPHIC MAPS BY GRIFFITHS AND OTHERS IS PROVED AS A
PROTOTYPE OF HIGHER DIMENSIONAL NEVANLINNA THEORY.ESTABLISHING SUCH A
SECOND MAIN THEOREM FOR ENTIRE CURVES IN GENERAL COMPLEX ALGEBRAIC
VARIETIES IS A WIDE-OPEN PROBLEM. IN CHAP. 4, THE CARTAN-NOCHKA SECOND
MAIN THEOREM IN THE LINEAR PROJECTIVE CASE AND THE LOGARITHMIC
BLOCH-OCHIAI THEOREM IN THE CASE OF GENERAL ALGEBRAIC VARIETIES ARE
PROVED. THEN THE THEORY OF ENTIRE CURVES IN SEMI-ABELIAN VARIETIES,
INCLUDING THE SECOND MAIN THEOREM OF NOGUCHI-WINKELMANN-YAMANOI, IS
DEALT WITH IN FULL DETAILS IN CHAP. 6. FOR THAT PURPOSE CHAP. 5 IS
DEVOTED TO THE NOTION OF SEMI-ABELIAN VARIETIES. THE RESULT LEADS TO A
NUMBER OF APPLICATIONS. WITH THESE RESULTS, THE KOBAYASHI HYPERBOLICITY
PROBLEMS ARE DISCUSSED IN CHAP. 7. IN THE LAST TWO CHAPTERS DIOPHANTINE
APPROXIMATION THEORY IS DEALT WITH FROM THE VIEWPOINT OF HIGHER
DIMENSIONAL NEVANLINNA THEORY, AND THE LANG-VOJTA CONJECTURE IS
CONFIRMED IN SOME CASES. IN CHAP. 8 THE THEORY OVER FUNCTION FIELDS IS
DISCUSSED. FINALLY, IN CHAP.9, THE THEOREMS OF ROTH, SCHMIDT, FALTINGS,
AND VOJTA OVER NUMBER FIELDS ARE PRESENTED AND FORMULATED IN VIEW OF
NEVANLINNA THEORY WITH RESULTS MOTIVATED BY THOSE IN CHAPS. 4, 6, AND 7
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT. |
any_adam_object | 1 |
author | Noguchi, Junjiro 1948- Winkelmann, Jörg 1963- |
author_GND | (DE-588)172286816 (DE-588)133717615 |
author_facet | Noguchi, Junjiro 1948- Winkelmann, Jörg 1963- |
author_role | aut aut |
author_sort | Noguchi, Junjiro 1948- |
author_variant | j n jn j w jw |
building | Verbundindex |
bvnumber | BV041645182 |
classification_rvk | SK 180 SK 780 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)869870483 (DE-599)BVBBV041645182 |
discipline | Mathematik |
doi_str_mv | 10.1007/978-4-431-54571-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 cb4500</leader><controlfield tag="001">BV041645182</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240626</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">140212s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9784431545705</subfield><subfield code="c">geb.</subfield><subfield code="9">978-4-431-54570-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9784431545712</subfield><subfield code="c">online</subfield><subfield code="9">978-4-431-54571-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-4-431-54571-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869870483</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041645182</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Noguchi, Junjiro</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172286816</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nevanlinna theory in several complex variables and diophantine approximation</subfield><subfield code="c">Junjiro Noguchi ; Jörg Winkelmann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Tokyo [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 416 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">350</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nevanlinna-Theorie</subfield><subfield code="0">(DE-588)4239989-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Approximation</subfield><subfield code="0">(DE-588)4135760-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nevanlinna-Theorie</subfield><subfield code="0">(DE-588)4239989-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diophantische Approximation</subfield><subfield code="0">(DE-588)4135760-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Winkelmann, Jörg</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133717615</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">350</subfield><subfield code="w">(DE-604)BV049758308</subfield><subfield code="9">350</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-4-431-54571-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027085906&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027085906&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-54571-2</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-54571-2</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-54571-2</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-54571-2</subfield><subfield code="l">DE-384</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-54571-2</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-54571-2</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-54571-2</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-54571-2</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV041645182 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T06:38:49Z |
institution | BVB |
isbn | 9784431545705 9784431545712 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027085906 |
oclc_num | 869870483 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM DE-739 DE-20 DE-19 DE-BY-UBM DE-634 DE-861 DE-384 DE-83 |
owner_facet | DE-703 DE-91 DE-BY-TUM DE-739 DE-20 DE-19 DE-BY-UBM DE-634 DE-861 DE-384 DE-83 |
physical | 1 Online-Ressource (XIV, 416 S.) |
psigel | ZDB-2-SMA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Springer |
record_format | marc |
series | Grundlehren der mathematischen Wissenschaften |
series2 | Grundlehren der mathematischen Wissenschaften |
spelling | Noguchi, Junjiro 1948- Verfasser (DE-588)172286816 aut Nevanlinna theory in several complex variables and diophantine approximation Junjiro Noguchi ; Jörg Winkelmann Tokyo [u.a.] Springer 2014 1 Online-Ressource (XIV, 416 S.) txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften 350 Nevanlinna-Theorie (DE-588)4239989-0 gnd rswk-swf Diophantische Approximation (DE-588)4135760-7 gnd rswk-swf Nevanlinna-Theorie (DE-588)4239989-0 s Diophantische Approximation (DE-588)4135760-7 s DE-604 Winkelmann, Jörg 1963- Verfasser (DE-588)133717615 aut Grundlehren der mathematischen Wissenschaften 350 (DE-604)BV049758308 350 https://doi.org/10.1007/978-4-431-54571-2 Verlag Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027085906&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027085906&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract |
spellingShingle | Noguchi, Junjiro 1948- Winkelmann, Jörg 1963- Nevanlinna theory in several complex variables and diophantine approximation Grundlehren der mathematischen Wissenschaften Nevanlinna-Theorie (DE-588)4239989-0 gnd Diophantische Approximation (DE-588)4135760-7 gnd |
subject_GND | (DE-588)4239989-0 (DE-588)4135760-7 |
title | Nevanlinna theory in several complex variables and diophantine approximation |
title_auth | Nevanlinna theory in several complex variables and diophantine approximation |
title_exact_search | Nevanlinna theory in several complex variables and diophantine approximation |
title_full | Nevanlinna theory in several complex variables and diophantine approximation Junjiro Noguchi ; Jörg Winkelmann |
title_fullStr | Nevanlinna theory in several complex variables and diophantine approximation Junjiro Noguchi ; Jörg Winkelmann |
title_full_unstemmed | Nevanlinna theory in several complex variables and diophantine approximation Junjiro Noguchi ; Jörg Winkelmann |
title_short | Nevanlinna theory in several complex variables and diophantine approximation |
title_sort | nevanlinna theory in several complex variables and diophantine approximation |
topic | Nevanlinna-Theorie (DE-588)4239989-0 gnd Diophantische Approximation (DE-588)4135760-7 gnd |
topic_facet | Nevanlinna-Theorie Diophantische Approximation |
url | https://doi.org/10.1007/978-4-431-54571-2 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027085906&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027085906&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV049758308 |
work_keys_str_mv | AT noguchijunjiro nevanlinnatheoryinseveralcomplexvariablesanddiophantineapproximation AT winkelmannjorg nevanlinnatheoryinseveralcomplexvariablesanddiophantineapproximation |