Marketing analytics: Data-driven techniques with Microsoft Excel
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Indianapolis, Ind.
Wiley
2014
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XXX, 690 S. Ill., graph. Darst. |
ISBN: | 9781118373439 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041626138 | ||
003 | DE-604 | ||
005 | 20190912 | ||
007 | t | ||
008 | 140204s2014 ad|| |||| 00||| eng d | ||
020 | |a 9781118373439 |9 978-1-118-37343-9 | ||
035 | |a (OCoLC)871557260 | ||
035 | |a (DE-599)BVBBV041626138 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-473 |a DE-573 |a DE-739 |a DE-355 |a DE-945 |a DE-N2 |a DE-1028 |a DE-20 |a DE-1043 |a DE-634 | ||
084 | |a QP 650 |0 (DE-625)141922: |2 rvk | ||
084 | |a ST 610 |0 (DE-625)143683: |2 rvk | ||
084 | |a WIR 800f |2 stub | ||
084 | |a DAT 426f |2 stub | ||
100 | 1 | |a Winston, Wayne L. |d 1950- |e Verfasser |0 (DE-588)134241614 |4 aut | |
245 | 1 | 0 | |a Marketing analytics |b Data-driven techniques with Microsoft Excel |c Wayne L. Winston |
264 | 1 | |a Indianapolis, Ind. |b Wiley |c 2014 | |
300 | |a XXX, 690 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Marketing |0 (DE-588)4037589-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a EXCEL |0 (DE-588)4138932-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Marketing |0 (DE-588)4037589-4 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a EXCEL |0 (DE-588)4138932-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-118-41730-0 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-118-43935-7 |
856 | 4 | 2 | |m Digitalisierung UB Bamberg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027067136&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027067136&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-027067136 |
Datensatz im Suchindex
_version_ | 1804151841970192384 |
---|---|
adam_text | Introduction
.......................................xxiii
I Using Excel to Summarize Marketing Data
.........1
1
Slicing and Dicing Marketing Data with PivotTables
............3
2
Using Excel Charts to Summarize Marketing Data
............29
3
Using Excel Functions to Summarize Marketing Data
..........59
II Pricing
...................................83
4
Estimating Demand Curves and Using
Solver to Optimize Price
...............................85
Price Bundling
......................................107
Nonlinear Pricing
...................................123
7
Price Skimming and Sales
.............................135
Revenue Management
................................143
III Forecasting
..............................159
9
Simple Linear Regression and Correlation
.................161
Using Multiple Regression to Forecast Sales
................177
Forecasting in the Presence of Special Events
...............213
Modeling Trend and Seasonally
........................225
13
Ratio to Moving Average Forecasting Method
..............235
Winter s Method
....................................241
Using Neural Networks to Forecast Sales
..................249
Marketing
Analytics
IV What do Customers Want?
..................261
16
Conjoint Analysis
....................................263
17
Logistic Regression
..................................285
Discrete Choice Analysis
..............................303
V Customer Value
...........................325
Calculating Lifetime Customer Value
.....................327
Using Customer Value to Value a Business
.................339
21
Customer Value, Monte Carlo Simulation, and
Marketing Decision Making
...........................347
22
Allocating Marketing Resources between
Customer Acquisition and Retention
.....................365
VI Market Segmentation
......................375
Cluster Analysis
....................................377
Collaborative Filtering
................................393
2S Using Classification Trees for Segmentation
................403
VII
Forecasting New Product Sales
..............413
Using
S
Curves to Forecast Sales of a New Product
..........
4Ί5
The Bass Diffusion Model
.............................427
2E Using the Copernican Principle to Predict Duration
of Future Sales
......................................439
VIII
Retailing
...............................443
29
Market Basket Analysis and Lift
.........................445
Marketing
Analytics
ι*
30
RFM Analysis and Optimizing Direct Mail Campaigns
........459
31
Using the SCAN*PRO Model and Its Variants
...............471
32
Allocating Retail Space and Sales Resources
................483
33
Forecasting Sales from Few Data Points
..................495
IX Advertising
..............................503
34
Measuring the Effectiveness of Advertising
................505
35
Media Selection Models
..............................517
36
Pay per Click (PPC) Online Advertising
...................529
X Marketing Research Tools
....................539
Principal Components Analysis (PCA)
....................541
Multidimensional Scaling (MDS)
........................559
39
Classification Algorithms: Naive
Bayes
Classifier and Discriminant Analysis
......................577
Analysis of Variance: One-way ANOVA
....................595
Analysis of Variance: Two-way ANOVA
....................607
XI Internet and Social Marketing
................619
Networks
.........................................621
The Mathematics Behind The Tipping Point
.................641
Viral Marketing
.....................................653
Text Mining
........................................663
Index
............................................673
Introduction
.......................................xxiii
I Using Excel to Summarize Marketing Data
................1
1
Slicing and Dicing Marketing Data with PivotTables
........3
Analyzing Sales at True Colors Hardware
......................3
Analyzing Sales at La Petit Bakery
...........................14
Analyzing How Demographics Affect Sales
....................21
Pulling Data from a PivotTable with the GETPIVOTDATA Function
.. 25
Summary
.............................................27
Exercises
..............................................27
2
Using Excel Charts to Summarize Marketing Data
........29
Combination Charts
.....................................29
Using a PivotChart to Summarize
Market Research Surveys
.................................36
Ensuring Charts Update Automatically
When New Data is Added
................................39
Making Chart Labels Dynamic
.............................40
Summarizing Monthly Sales-Force Rankings
...................43
Using Check Boxes to Control Data in a Chart
.................45
Using Sparklines to Summarize Multiple Data Series
.............48
Using GETPIVOTDATA to Create the
End-of-Week Sales Report
.................................52
Summary
.............................................55
Exercises
..............................................55
3
Using Excel Functions to Summarize Marketing Data
......59
Summarizing Data with a Histogram
........................59
Using Statistical Functions to Summarize Marketing Data
.........64
Summary
.............................................79
Exercises
..............................................80
xii
Marketing
Analytics
II Pricing
..........................................83
4
Estimating Demand Curves and Using
Solver to Optimize Price
...........................85
Estimating Linear and Power Demand Curves
.................85
Using the Excel Solver to Optimize Price
......................90
Pricing Using Subjectively Estimated Demand Curves
............96
Using SolverTable to Price Multiple Products
..................99
Summary
............................................103
Exercises
.............................................104
5
Price Bundling
..................................107
Why Bundle?
......................................... 107
Using Evolutionary Solver to Find Optimal Bundle Prices
........ 111
Summary
............................................ 119
Exercises
............................................. 119
6
Nonlinear Pricing
...............................123
Demand Curves and Willingness to Pay
.....................124
Profit Maximizing with Nonlinear Pricing Strategies
............125
Summary
............................................131
Exercises
.............................................132
7
Price Skimming and Sales
.........................135
Dropping Prices Over Time
..............................135
Why Have Sales?
.......................................138
Summary
............................................142
Exercises
.............................................142
8
Revenue Management
............................ 143
Estimating Demand for the Bates Motel and
Segmenting Customers
.................................144
Handling Uncertainty
...................................150
Markdown
Pricing
.....................................153
Marketing
Analytics
* ·
Summary
............................................156
Exercises
.............................................156
III Forecasting
.....................................159
9
Simple Linear Regression and Correlation
.............161
Simple Linear Regression
................................161
Using Correlations to Summarize Linear Relationships
..........170
Summary
............................................174
Exercises
.............................................175
10
Using Multiple Regression to Forecast Sales
............177
Introducing Multiple Linear Regression
......................178
Running a Regression with the Data Analysis Add-In
...........179
Interpreting the Regression Output
........................182
Using Qualitative Independent Variables in Regression
..........186
Modeling Interactions and Nonlinearities
....................192
Testing Validity of Regression Assumptions
...................195
Multicollinearity
.......................................204
Validation of a Regression
................................207
Summary
............................................209
Exercises
.............................................210
11
Forecasting in the Presence of Special Events
...........213
Building the Basic Model
................................213
Summary
............................................222
Exercises
.............................................222
Modeling Trend and Seasonality
....................225
Using Moving Averages to Smooth Data and
Eliminate Seasonality
...................................225
An Additive Model with Trends and Seasonality
...............228
A Multiplicative Model with Trend and Seasonality
.............231
Summary
............................................234
Exercises
.............................................234
Marketing Analytics
15
Ratio to Moving Average Forecasting Method
..........235
Using the Ratio to Moving Average Method
..................235
Applying the Ratio to Moving Average Method to
Monthly Data
.........................................238
Summary
............................................238
Exercises
.............................................239
14
Winter s Method
................................241
Parameter Definitions for Winter s Method
...................241
Initializing Winter s Method
..............................243
Estimating the Smoothing Constants
.......................244
Forecasting Future Months
...............................246
Mean Absolute Percentage Error
(MAPE)
....................247
Summary
............................................248
Exercises
.............................................248
15
Using Neural Networks to Forecast Sales
..............249
Regression and Neural Nets
..............................249
Using Neural Networks
.................................250
Using NeuralTools to Predict Sales
.........................253
Using NeuralTools to Forecast Airline Miles
...................258
Summary
............................................259
Exercises
.............................................259
IV What do Customers Want?
........................261
Conjoint Analysis
................................263
Products, Attributes, and Levels
...........................263
Full Profile Conjoint Analysis
..............................265
Using Evolutionary Solver to Generate
Product Profiles
.......................................272
Developing a Conjoint Simulator
..........................277
Examining Other Forms of Conjoint Analysis
.................279
Summary
............................................281
Exercises
.............................................281
Marketing
Analytics
17
Logistic Regression
..............................285
Why Logistic Regression Is Necessary
.......................286
Logistic Regression Model
...............................289
Maximum Likelihood Estimate of Logistic Regression Model
.....290
Using StatTools to Estimate and Test Logistic
Regression Hypotheses
..................................293
Performing a Logistic Regression with Count Data
.............298
Summary
............................................300
Exercises
.............................................300
18
Discrete Choice Analysis
..........................303
Random Utility Theory
..................................303
Discrete Choice Analysis of Chocolate Preferences
.............305
Incorporating Price and Brand Equity into
Discrete Choice Analysis
.................................309
Dynamic Discrete Choice
................................315
Independence of Irrelevant Alternatives (IIA) Assumption
........316
Discrete Choice and Price Elasticity
.........................317
Summary
............................................318
Exercises
.............................................319
V Customer Value
..................................325
19
Calculating Lifetime Customer Value
.................327
Basic Customer Value Template
...........................328
Measuring Sensitivity Analysis with Two-way Tables
...........330
An Explicit Formula for the Multiplier
.......................331
Varying Margins
.......................................331
DIRECTV, Customer Value, and Friday Night Lights (FNL)
.........333
Estimating the Chance a Customer Is Still Active
..............334
Going Beyond the Basic Customer Lifetime Value Model
........335
Summary
............................................336
Exercises
.............................................336
xv
Marketing Analytics
Using Customer Value to Value a Business
.............339
A Primer on Valuation
...................................339
Using Customer Value to Value a Business
...................340
Measuring Sensitivity Analysis with a One-way Table
...........343
Using Customer Value to Estimate a Firm s Market Value
........344
Summary
............................................344
Exercises
.............................................345
21
Customer Value, Monte Carlo Simulation, and
Marketing Decision Making
........................347
A Markov Chain Model of Customer Value
...................347
Using Monte Carlo Simulation to Predict Success of
a Marketing Initiative
...................................353
Summary
............................................359
Exercises
.............................................360
22
Allocating Marketing Resources between
Customer Acquisition and Retention
..................347
Modeling the Relationship between Spending and
Customer Acquisition and Retention
.......................365
Basic Model for Optimizing Retention and Acquisition Spending
.. 368
An Improvement in the Basic Model
........................371
Summary
............................................373
Exercises
.............................................374
VI Market Segmentation
.............................375
23
Cluster Analysis
................................377
Clustering U.S. Cities
...................................378
Using Conjoint Analysis to Segment a Market
................386
Summary
............................................391
Exercises
.............................................391
24
Collaborative Filtering
............................393
User-Based Collaborative Filtering
..........................393
Item-Based Filtering
....................................398
Marketing
Analytics
«vii
Comparing Item- and User-Based Collaborative Filtering
........400
The Netflix Competition
.................................401
Summary
............................................401
Exercises
.............................................402
25
Using Classification Trees for Segmentation
............403
Introducing Decision Trees
...............................403
Constructing a Decision Tree
.............................404
Pruning Trees and CART
.................................409
Summary
............................................410
Exercises
.............................................410
VII
Forecasting New Product Sales
......................413
26
Using
S
Curves to Forecast Sales of a New Product
......415
Examining
S
Curves
....................................415
Fitting the Pearl or Logistic Curve
..........................418
Fitting an
S
Curve with Seasonally
.........................420
Fitting the Gompertz Curve
..............................422
Pearl Curve versus Gompertz Curve
.......................425
Summary
............................................425
Exercises
.............................................425
27
The Bass Diffusion Model
.........................427
Introducing the Bass Model
..............................427
Estimating the Bass Model
...............................428
Using the Bass Model to Forecast New Product Sales
...........431
Deflating Intentions Data
................................434
Using the Bass Model to Simulate Safes of a New Product
.......435
Modifications of the Bass Model
...........................437
Summary
............................................438
Exercises
.............................................438
Marketing
Analytics
28
Using the Copernican Principle to Predict Duration
of Future Sales
...................................439
Using the Copernican Principle
............................439
Simulating Remaining Life of Product
.......................440
Summary
............................................441
Exercises
.............................................441
VIII
Retailing
.....................................443
29
Market Basket Analysis and Lift
.....................445
Computing Lift for Two Products
..........................445
Computing Three-Way Lifts
..............................449
A Data Mining Legend Debunked!
.........................453
Using Lift to Optimize Store Layout
........................454
Summary
............................................456
Exercises
.............................................456
SO RFM Analysis and Optimizing Direct Mail Campaigns
— 459
RFM Analysis
.........................................459
An RFM Success Story
...................................465
Using the Evolutionary Solver to Optimize
a Direct Mail Campaign
.................................465
Summary
............................................468
Exercises
.............................................468
31
Using the SCAN*PRO Model and Its Variants
...........471
Introducing the SCAN*PRO Model
.........................471
Modeling Sales of Snickers Bars
...........................472
Forecasting Software Sales
...............................475
Summary
............................................480
Exercises
.............................................480
32
Allocating Retail Space and Sales Resources
............483
Identifying the Sales to Marketing Effort Relationship
...........483
Modeling the Marketing Response to Sales Force Effort
.........484
Marketing
Analytics
Optimizing Allocation of Sales Effort
.......................489
Using the Gompertz Curve to Allocate
Supermarket Shelf Space
................................492
Summary
............................................492
Exercises
.............................................493
33
Forecasting Sales from Few Data Points
..............495
Predicting Movie Revenues
..............................495
Modifying the Model to Improve Forecast Accuracy
............498
Using
3
Weeks of Revenue to Forecast Movie Revenues
.........499
Summary
............................................501
Exercises
.............................................501
IX Advertising
.....................................503
34
Measuring the Effectiveness of Advertising
............505
The Adstock Model
....................................505
Another Model for Estimating Ad Effectiveness
...............509
Optimizing Advertising: Pulsing versus Continuous Spending
.....511
Summary
............................................514
Exercises
.............................................515
35 Media Selection Models
...........................517
A Linear Media Allocation Model
..........................517
Quantity Discounts
.....................................520
A Monte Carlo Media Allocation Simulation
..................522
Summary
............................................527
Exercises
.............................................527
36
Pay per Click (PPC) Online Advertising
...............529
Defining Pay per Click Advertising
.........................529
Profitability Model for PPC Advertising
......................531
Google AdWords Auction
...............................533
Using Bid Simulator to Optimize Your Bid
....................536
Summary
............................................537
Exercises
.............................................537
χ*
Marketing
Analytics
X Marketing Research Tools
...........................539
3/
Principal Components Analysis (PCA)
................541
Defining PCA
.........................................541
Linear Combinations, Variances, and Covariances
..............542
Diving into Principal Components Analysis
...................548
Other Applications of PCA
...............................556
Summary
............................................557
Exercises
.............................................558
ІШ
Multidimensional Scaling (MDS)
....................559
Similarity Data
........................................559
MDS Analysis of U.S. City Distances
........................560
MDS Analysis of Breakfast Foods
...........................566
Finding a Consumer s Ideal Point
..........................570
Summary
............................................574
Exercises
.............................................574
39
Classification Algorithms: Naive
Bayes
Classifier and Discriminant Analysis
..................577
Conditional Probability
..................................578
Bayes
Theorem
.......................................579
Naive
Bayes
Classifier
...................................581
Linear Discriminant Analysis
..............................586
Model Validation
......................................591
The Surprising Virtues of Naive
Bayes
.......................592
Summary
............................................592
Exercises
.............................................593
40
Analysis of Variance: One-way ANOVA
................595
Testing Whether Group Means Are Different
.................595
Example of One-way ANOVA
.............................596
The Role of Variance in ANOVA
...........................598
Forecasting with One-way ANOVA
.........................599
Marketing
Analytics
Contrasts
............................................601
Summary
............................................603
Exercises
.............................................604
41
Analysis of Variance: Two-way ANOVA
................607
Introducing Two-way ANOVA
.............................607
Two-way ANOVA without Replication
.......................608
Two-way ANOVA with Replication
.........................611
Summary
............................................616
Exercises
.............................................617
XI Internet and Social Marketing
.......................619
42
Networks
.....................................621
Measuring the Importance of a Node
.......................621
Measuring the Importance of a Link
........................626
Summarizing Network Structure
..........................628
Random and Regular Networks
...........................631
The Rich Get Richer
....................................634
Klout Score
...........................................636
Summary
............................................637
Exercises
.............................................638
The Mathematics Behind The Tipping Point
.............641
Network Contagion
....................................641
A Bass Version of the Tipping Point
........................646
Summary
............................................650
Exercises
.............................................650
Viral Marketing
.................................653
Watts Model
.........................................654
A More Complex Viral Marketing Model
....................655
Summary
............................................660
Exercises
.............................................661
χ*
Marketing Analytics
45
Text Mining
....................................663
Text Mining Definitions
.................................664
Giving Structure to Unstructured Text
......................664
Applying Text Mining in Real Life Scenarios
..................668
Summary
............................................671
Exercises
.............................................671
Index
........................................673
Powerful techniques for analyzing business data with Excel
Most businesses are awash in data. To make that data work for your business, you need a simple,
cost-effective tool
—
ideally, one you already know something about. Excel is that tool.
Every example in this book features step-by-step instructions, a downloadable Excel file containing
data and solutions, and plenty of
Screenshots.
To sharpen your marketing analytics, you just need
this guide and Excel.
This book will help you master many important marketing analytic concepts, including:
•
Using Excel charts and functions to summarize marketing data
•
Estimating demand curves and using Solver to determine profit-maximizing pricing strategies
•
Using cluster analysis for market segmentation
•
Developing customized forecasting models that show you how your marketing mix impacts sales
•
Measuring the effectiveness of your advertising program
•
Understanding the analytics underlying social networks and viral marketing
Companion website
At the companion website, www.wiley.com/go/marketinganalytics, you can download all the Excel files
used in this book, find answers to all the exercises at the ends of the chapters, and be advised of any
errors discovered.
|
any_adam_object | 1 |
author | Winston, Wayne L. 1950- |
author_GND | (DE-588)134241614 |
author_facet | Winston, Wayne L. 1950- |
author_role | aut |
author_sort | Winston, Wayne L. 1950- |
author_variant | w l w wl wlw |
building | Verbundindex |
bvnumber | BV041626138 |
classification_rvk | QP 650 ST 610 |
classification_tum | WIR 800f DAT 426f |
ctrlnum | (OCoLC)871557260 (DE-599)BVBBV041626138 |
discipline | Informatik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02052nam a2200433 c 4500</leader><controlfield tag="001">BV041626138</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190912 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140204s2014 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118373439</subfield><subfield code="9">978-1-118-37343-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)871557260</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041626138</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 650</subfield><subfield code="0">(DE-625)141922:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 610</subfield><subfield code="0">(DE-625)143683:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 800f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 426f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Winston, Wayne L.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134241614</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Marketing analytics</subfield><subfield code="b">Data-driven techniques with Microsoft Excel</subfield><subfield code="c">Wayne L. Winston</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Indianapolis, Ind.</subfield><subfield code="b">Wiley</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXX, 690 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Marketing</subfield><subfield code="0">(DE-588)4037589-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">EXCEL</subfield><subfield code="0">(DE-588)4138932-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Marketing</subfield><subfield code="0">(DE-588)4037589-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">EXCEL</subfield><subfield code="0">(DE-588)4138932-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-118-41730-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-118-43935-7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027067136&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027067136&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027067136</subfield></datafield></record></collection> |
id | DE-604.BV041626138 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:01:14Z |
institution | BVB |
isbn | 9781118373439 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027067136 |
oclc_num | 871557260 |
open_access_boolean | |
owner | DE-1050 DE-473 DE-BY-UBG DE-573 DE-739 DE-355 DE-BY-UBR DE-945 DE-N2 DE-1028 DE-20 DE-1043 DE-634 |
owner_facet | DE-1050 DE-473 DE-BY-UBG DE-573 DE-739 DE-355 DE-BY-UBR DE-945 DE-N2 DE-1028 DE-20 DE-1043 DE-634 |
physical | XXX, 690 S. Ill., graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Wiley |
record_format | marc |
spelling | Winston, Wayne L. 1950- Verfasser (DE-588)134241614 aut Marketing analytics Data-driven techniques with Microsoft Excel Wayne L. Winston Indianapolis, Ind. Wiley 2014 XXX, 690 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Datenanalyse (DE-588)4123037-1 gnd rswk-swf Marketing (DE-588)4037589-4 gnd rswk-swf EXCEL (DE-588)4138932-3 gnd rswk-swf Marketing (DE-588)4037589-4 s Datenanalyse (DE-588)4123037-1 s EXCEL (DE-588)4138932-3 s DE-604 Erscheint auch als Online-Ausgabe 978-1-118-41730-0 Erscheint auch als Online-Ausgabe 978-1-118-43935-7 Digitalisierung UB Bamberg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027067136&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027067136&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Winston, Wayne L. 1950- Marketing analytics Data-driven techniques with Microsoft Excel Datenanalyse (DE-588)4123037-1 gnd Marketing (DE-588)4037589-4 gnd EXCEL (DE-588)4138932-3 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)4037589-4 (DE-588)4138932-3 |
title | Marketing analytics Data-driven techniques with Microsoft Excel |
title_auth | Marketing analytics Data-driven techniques with Microsoft Excel |
title_exact_search | Marketing analytics Data-driven techniques with Microsoft Excel |
title_full | Marketing analytics Data-driven techniques with Microsoft Excel Wayne L. Winston |
title_fullStr | Marketing analytics Data-driven techniques with Microsoft Excel Wayne L. Winston |
title_full_unstemmed | Marketing analytics Data-driven techniques with Microsoft Excel Wayne L. Winston |
title_short | Marketing analytics |
title_sort | marketing analytics data driven techniques with microsoft excel |
title_sub | Data-driven techniques with Microsoft Excel |
topic | Datenanalyse (DE-588)4123037-1 gnd Marketing (DE-588)4037589-4 gnd EXCEL (DE-588)4138932-3 gnd |
topic_facet | Datenanalyse Marketing EXCEL |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027067136&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027067136&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT winstonwaynel marketinganalyticsdatadriventechniqueswithmicrosoftexcel |