Hidden harmonies: the lives and times of the Pythagorean theorem
A squared plus b squared equals c squared. It sounds simple, doesn't it? Yet this familiar expression is a gateway into the riotous garden of mathematics, and sends us on a journey of exploration in the company of two inspired guides, who trace the life of the Pythagorean theorem from ancient B...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Bloomsbury Press
2011
|
Ausgabe: | 1. U.S. ed. |
Schlagworte: | |
Online-Zugang: | 13 80 Zentralblatt MATH |
Zusammenfassung: | A squared plus b squared equals c squared. It sounds simple, doesn't it? Yet this familiar expression is a gateway into the riotous garden of mathematics, and sends us on a journey of exploration in the company of two inspired guides, who trace the life of the Pythagorean theorem from ancient Babylon to the present, visiting along the way Leonardo da Vinci, Albert Einstein, President James Garfield, and the Freemasons--not to mention the elusive Pythagoras himself. Why does this theorem have more than two hundred proofs--or is it four thousand? And it has even more applications than proofs: Ancient Egyptians used it for surveying, and today astronomers call on it to measure the distance between stars. It works not just in two dimensions, but any number you like, up to infinity. And perhaps most intriguing of all, it opened the door to the world of irrational numbers.--From publisher description |
Beschreibung: | Includes bibliographical references (p. [267]-278] and index |
Beschreibung: | XII, 290 S. Ill., graph. Darst. 25 cm |
ISBN: | 9781596915220 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041581623 | ||
003 | DE-604 | ||
005 | 20140214 | ||
007 | t | ||
008 | 140121s2011 ad|| |||| 00||| eng d | ||
010 | |a 2010019959 | ||
020 | |a 9781596915220 |c hbk. : alk. paper |9 978-1-596-91522-0 | ||
035 | |a (OCoLC)731663046 | ||
035 | |a (DE-599)GBV627175155 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-210 | ||
082 | 0 | |a 516.22 | |
100 | 1 | |a Kaplan, Robert |d 1933- |e Verfasser |0 (DE-588)124608302 |4 aut | |
245 | 1 | 0 | |a Hidden harmonies |b the lives and times of the Pythagorean theorem |c Robert Kaplan and Ellen Kaplan |
250 | |a 1. U.S. ed. | ||
264 | 1 | |a New York [u.a.] |b Bloomsbury Press |c 2011 | |
300 | |a XII, 290 S. |b Ill., graph. Darst. |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. [267]-278] and index | ||
520 | 1 | |a A squared plus b squared equals c squared. It sounds simple, doesn't it? Yet this familiar expression is a gateway into the riotous garden of mathematics, and sends us on a journey of exploration in the company of two inspired guides, who trace the life of the Pythagorean theorem from ancient Babylon to the present, visiting along the way Leonardo da Vinci, Albert Einstein, President James Garfield, and the Freemasons--not to mention the elusive Pythagoras himself. Why does this theorem have more than two hundred proofs--or is it four thousand? And it has even more applications than proofs: Ancient Egyptians used it for surveying, and today astronomers call on it to measure the distance between stars. It works not just in two dimensions, but any number you like, up to infinity. And perhaps most intriguing of all, it opened the door to the world of irrational numbers.--From publisher description | |
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 0 | 7 | |a Pythagoreischer Lehrsatz |0 (DE-588)4176546-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pythagoreischer Lehrsatz |0 (DE-588)4176546-1 |D s |
689 | 0 | 1 | |a Geschichte |A z |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kaplan, Ellen |d 1936- |e Verfasser |0 (DE-588)124608329 |4 aut | |
856 | 4 | |u http://catdir.loc.gov/catdir/enhancements/fy1010/2010019959-b.html |3 13 | |
856 | 4 | |u http://catdir.loc.gov/catdir/enhancements/fy1010/2010019959-d.html |3 80 | |
856 | 4 | |m DE-601 |q pdf/application |u http://zbmath.org/?q=an:1239.01008 |y Zentralblatt MATH |3 Inhaltstext | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027026871 |
Datensatz im Suchindex
_version_ | 1804151770393346048 |
---|---|
any_adam_object | |
author | Kaplan, Robert 1933- Kaplan, Ellen 1936- |
author_GND | (DE-588)124608302 (DE-588)124608329 |
author_facet | Kaplan, Robert 1933- Kaplan, Ellen 1936- |
author_role | aut aut |
author_sort | Kaplan, Robert 1933- |
author_variant | r k rk e k ek |
building | Verbundindex |
bvnumber | BV041581623 |
ctrlnum | (OCoLC)731663046 (DE-599)GBV627175155 |
dewey-full | 516.22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.22 |
dewey-search | 516.22 |
dewey-sort | 3516.22 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. U.S. ed. |
era | Geschichte gnd |
era_facet | Geschichte |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02488nam a2200421 c 4500</leader><controlfield tag="001">BV041581623</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140214 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140121s2011 ad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2010019959</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781596915220</subfield><subfield code="c">hbk. : alk. paper</subfield><subfield code="9">978-1-596-91522-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)731663046</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV627175155</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-210</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaplan, Robert</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124608302</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hidden harmonies</subfield><subfield code="b">the lives and times of the Pythagorean theorem</subfield><subfield code="c">Robert Kaplan and Ellen Kaplan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. U.S. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Bloomsbury Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 290 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [267]-278] and index</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">A squared plus b squared equals c squared. It sounds simple, doesn't it? Yet this familiar expression is a gateway into the riotous garden of mathematics, and sends us on a journey of exploration in the company of two inspired guides, who trace the life of the Pythagorean theorem from ancient Babylon to the present, visiting along the way Leonardo da Vinci, Albert Einstein, President James Garfield, and the Freemasons--not to mention the elusive Pythagoras himself. Why does this theorem have more than two hundred proofs--or is it four thousand? And it has even more applications than proofs: Ancient Egyptians used it for surveying, and today astronomers call on it to measure the distance between stars. It works not just in two dimensions, but any number you like, up to infinity. And perhaps most intriguing of all, it opened the door to the world of irrational numbers.--From publisher description</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pythagoreischer Lehrsatz</subfield><subfield code="0">(DE-588)4176546-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pythagoreischer Lehrsatz</subfield><subfield code="0">(DE-588)4176546-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaplan, Ellen</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124608329</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://catdir.loc.gov/catdir/enhancements/fy1010/2010019959-b.html</subfield><subfield code="3">13</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://catdir.loc.gov/catdir/enhancements/fy1010/2010019959-d.html</subfield><subfield code="3">80</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">http://zbmath.org/?q=an:1239.01008</subfield><subfield code="y">Zentralblatt MATH</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027026871</subfield></datafield></record></collection> |
id | DE-604.BV041581623 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:00:06Z |
institution | BVB |
isbn | 9781596915220 |
language | English |
lccn | 2010019959 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027026871 |
oclc_num | 731663046 |
open_access_boolean | |
owner | DE-210 |
owner_facet | DE-210 |
physical | XII, 290 S. Ill., graph. Darst. 25 cm |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Bloomsbury Press |
record_format | marc |
spelling | Kaplan, Robert 1933- Verfasser (DE-588)124608302 aut Hidden harmonies the lives and times of the Pythagorean theorem Robert Kaplan and Ellen Kaplan 1. U.S. ed. New York [u.a.] Bloomsbury Press 2011 XII, 290 S. Ill., graph. Darst. 25 cm txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references (p. [267]-278] and index A squared plus b squared equals c squared. It sounds simple, doesn't it? Yet this familiar expression is a gateway into the riotous garden of mathematics, and sends us on a journey of exploration in the company of two inspired guides, who trace the life of the Pythagorean theorem from ancient Babylon to the present, visiting along the way Leonardo da Vinci, Albert Einstein, President James Garfield, and the Freemasons--not to mention the elusive Pythagoras himself. Why does this theorem have more than two hundred proofs--or is it four thousand? And it has even more applications than proofs: Ancient Egyptians used it for surveying, and today astronomers call on it to measure the distance between stars. It works not just in two dimensions, but any number you like, up to infinity. And perhaps most intriguing of all, it opened the door to the world of irrational numbers.--From publisher description Geschichte gnd rswk-swf Pythagoreischer Lehrsatz (DE-588)4176546-1 gnd rswk-swf Pythagoreischer Lehrsatz (DE-588)4176546-1 s Geschichte z DE-604 Kaplan, Ellen 1936- Verfasser (DE-588)124608329 aut http://catdir.loc.gov/catdir/enhancements/fy1010/2010019959-b.html 13 http://catdir.loc.gov/catdir/enhancements/fy1010/2010019959-d.html 80 DE-601 pdf/application http://zbmath.org/?q=an:1239.01008 Zentralblatt MATH Inhaltstext |
spellingShingle | Kaplan, Robert 1933- Kaplan, Ellen 1936- Hidden harmonies the lives and times of the Pythagorean theorem Pythagoreischer Lehrsatz (DE-588)4176546-1 gnd |
subject_GND | (DE-588)4176546-1 |
title | Hidden harmonies the lives and times of the Pythagorean theorem |
title_auth | Hidden harmonies the lives and times of the Pythagorean theorem |
title_exact_search | Hidden harmonies the lives and times of the Pythagorean theorem |
title_full | Hidden harmonies the lives and times of the Pythagorean theorem Robert Kaplan and Ellen Kaplan |
title_fullStr | Hidden harmonies the lives and times of the Pythagorean theorem Robert Kaplan and Ellen Kaplan |
title_full_unstemmed | Hidden harmonies the lives and times of the Pythagorean theorem Robert Kaplan and Ellen Kaplan |
title_short | Hidden harmonies |
title_sort | hidden harmonies the lives and times of the pythagorean theorem |
title_sub | the lives and times of the Pythagorean theorem |
topic | Pythagoreischer Lehrsatz (DE-588)4176546-1 gnd |
topic_facet | Pythagoreischer Lehrsatz |
url | http://catdir.loc.gov/catdir/enhancements/fy1010/2010019959-b.html http://catdir.loc.gov/catdir/enhancements/fy1010/2010019959-d.html http://zbmath.org/?q=an:1239.01008 |
work_keys_str_mv | AT kaplanrobert hiddenharmoniesthelivesandtimesofthepythagoreantheorem AT kaplanellen hiddenharmoniesthelivesandtimesofthepythagoreantheorem |