Undergraduate convexity: from Fourier and Motzkin to Kuhn and Tucker
Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin eliminati...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore [u.a.]
World Scientific
2013
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point algorithm ... P. [4] of cover |
Beschreibung: | Literaturverz. S. 273 - 275 |
Beschreibung: | XIV, 283 S. Ill., graph. Darst. 23 cm |
ISBN: | 9789814412513 9789814452762 9814412511 9814452769 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041478652 | ||
003 | DE-604 | ||
005 | 20220324 | ||
007 | t | ||
008 | 131213s2013 si ad|| |||| 00||| eng d | ||
010 | |a 013427381 | ||
020 | |a 9789814412513 |c hbk. |9 978-981-4412-51-3 | ||
020 | |a 9789814452762 |c pbk. |9 978-981-4452-76-2 | ||
020 | |a 9814412511 |9 981-4412-51-1 | ||
020 | |a 9814452769 |9 981-4452-76-9 | ||
035 | |a (OCoLC)869856259 | ||
035 | |a (DE-599)BVBBV041478652 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a si |c SG | ||
049 | |a DE-91G |a DE-824 |a DE-83 |a DE-19 |a DE-355 | ||
050 | 0 | |a QA331.5 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a MAT 915 |2 stub | ||
084 | |a MAT 525 |2 stub | ||
084 | |a 52Axx |2 msc | ||
084 | |a MAT 263 |2 stub | ||
100 | 1 | |a Lauritzen, Niels |d 1964- |e Verfasser |0 (DE-588)172628679 |4 aut | |
245 | 1 | 0 | |a Undergraduate convexity |b from Fourier and Motzkin to Kuhn and Tucker |c Niels Lauritzen |
264 | 1 | |a Singapore [u.a.] |b World Scientific |c 2013 | |
300 | |a XIV, 283 S. |b Ill., graph. Darst. |c 23 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 273 - 275 | ||
520 | |a Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point algorithm ... P. [4] of cover | ||
650 | 4 | |a Convex functions | |
650 | 4 | |a Convex domains | |
650 | 0 | 7 | |a Konvexe Menge |0 (DE-588)4165212-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Funktion |0 (DE-588)4139679-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexität |0 (DE-588)4114284-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Konvexität |0 (DE-588)4114284-6 |D s |
689 | 0 | 1 | |a Konvexe Menge |0 (DE-588)4165212-5 |D s |
689 | 0 | 2 | |a Konvexe Funktion |0 (DE-588)4139679-0 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-4412-52-0 |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026924658&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-026924658 |
Datensatz im Suchindex
_version_ | 1804151620128210944 |
---|---|
adam_text | UNDERGRADUATE CONVEXITY
/ LAURITZEN, NIELS 1964-
: 2013
TABLE OF CONTENTS / INHALTSVERZEICHNIS
1. FOURIER-MOTZKIN ELIMINATION
2. AFFINE SUBSPACES
3. CONVEX SUBSETS
4. POLYHEDRA
5. COMPUTATIONS WITH POLYHEDRA
6. CLOSED CONVEX SUBSETS AND SEPARATING HYPERPLANES
7. CONVEX FUNCTIONS
8. DIFFERENTIABLE FUNCTIONS OF SEVERAL VARIABLES
9. CONVEX FUNCTIONS OF SEVERAL VARIABLES
10. CONVEX OPTIMIZATION
APPENDICES
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Lauritzen, Niels 1964- |
author_GND | (DE-588)172628679 |
author_facet | Lauritzen, Niels 1964- |
author_role | aut |
author_sort | Lauritzen, Niels 1964- |
author_variant | n l nl |
building | Verbundindex |
bvnumber | BV041478652 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331.5 |
callnumber-search | QA331.5 |
callnumber-sort | QA 3331.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 380 |
classification_tum | MAT 915 MAT 525 MAT 263 |
ctrlnum | (OCoLC)869856259 (DE-599)BVBBV041478652 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02707nam a2200553 c 4500</leader><controlfield tag="001">BV041478652</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220324 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">131213s2013 si ad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">013427381</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814412513</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-981-4412-51-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814452762</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-981-4452-76-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814412511</subfield><subfield code="9">981-4412-51-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814452769</subfield><subfield code="9">981-4452-76-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869856259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041478652</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">si</subfield><subfield code="c">SG</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 915</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 525</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52Axx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 263</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lauritzen, Niels</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172628679</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Undergraduate convexity</subfield><subfield code="b">from Fourier and Motzkin to Kuhn and Tucker</subfield><subfield code="c">Niels Lauritzen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 283 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">23 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 273 - 275</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point algorithm ... P. [4] of cover</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex domains</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexität</subfield><subfield code="0">(DE-588)4114284-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexität</subfield><subfield code="0">(DE-588)4114284-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-4412-52-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026924658&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026924658</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV041478652 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:57:42Z |
institution | BVB |
isbn | 9789814412513 9789814452762 9814412511 9814452769 |
language | English |
lccn | 013427381 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026924658 |
oclc_num | 869856259 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-824 DE-83 DE-19 DE-BY-UBM DE-355 DE-BY-UBR |
owner_facet | DE-91G DE-BY-TUM DE-824 DE-83 DE-19 DE-BY-UBM DE-355 DE-BY-UBR |
physical | XIV, 283 S. Ill., graph. Darst. 23 cm |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific |
record_format | marc |
spelling | Lauritzen, Niels 1964- Verfasser (DE-588)172628679 aut Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker Niels Lauritzen Singapore [u.a.] World Scientific 2013 XIV, 283 S. Ill., graph. Darst. 23 cm txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 273 - 275 Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point algorithm ... P. [4] of cover Convex functions Convex domains Konvexe Menge (DE-588)4165212-5 gnd rswk-swf Konvexe Funktion (DE-588)4139679-0 gnd rswk-swf Konvexität (DE-588)4114284-6 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Konvexität (DE-588)4114284-6 s Konvexe Menge (DE-588)4165212-5 s Konvexe Funktion (DE-588)4139679-0 s DE-604 Erscheint auch als Online-Ausgabe 978-981-4412-52-0 LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026924658&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lauritzen, Niels 1964- Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker Convex functions Convex domains Konvexe Menge (DE-588)4165212-5 gnd Konvexe Funktion (DE-588)4139679-0 gnd Konvexität (DE-588)4114284-6 gnd |
subject_GND | (DE-588)4165212-5 (DE-588)4139679-0 (DE-588)4114284-6 (DE-588)4123623-3 |
title | Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker |
title_auth | Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker |
title_exact_search | Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker |
title_full | Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker Niels Lauritzen |
title_fullStr | Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker Niels Lauritzen |
title_full_unstemmed | Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker Niels Lauritzen |
title_short | Undergraduate convexity |
title_sort | undergraduate convexity from fourier and motzkin to kuhn and tucker |
title_sub | from Fourier and Motzkin to Kuhn and Tucker |
topic | Convex functions Convex domains Konvexe Menge (DE-588)4165212-5 gnd Konvexe Funktion (DE-588)4139679-0 gnd Konvexität (DE-588)4114284-6 gnd |
topic_facet | Convex functions Convex domains Konvexe Menge Konvexe Funktion Konvexität Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026924658&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lauritzenniels undergraduateconvexityfromfourierandmotzkintokuhnandtucker |