Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
2014
|
Schriftenreihe: | Springer Series in Advanced Microelectronics
47 |
Schlagworte: | |
Online-Zugang: | BTU01 FHA01 FHI01 FHN01 FHR01 FKE01 FRO01 FWS01 FWS02 UBY01 Volltext |
Beschreibung: | Due to the ever increasing electric fields in scaled CMOS devices, reliability is becoming a showstopper for further scaled technology nodes. Although several groups have already demonstrated functional Si channel devices with aggressively scaled Equivalent Oxide Thickness (EOT) down to 5Å, a 10 year reliable device operation cannot be guaranteed anymore due to severe Negative Bias Temperature Instability. This book focuses on the reliability of the novel (Si)Ge channel quantum well pMOSFET technology. This technology is being considered for possible implementation in next CMOS technology nodes, thanks to its benefit in terms of carrier mobility and device threshold voltage tuning. We observe that it also opens a degree of freedom for device reliability optimization. By properly tuning the device gate stack, sufficiently reliable ultra-thin EOT devices with a 10 years lifetime at operating conditions are demonstrated. The extensive experimental datasets collected on a variety of processed 300mm wafers and presented here show the reliability improvement to be process- and architecture-independent and, as such, readily transferable to advanced device architectures as Tri-Gate (finFET) devices. We propose a physical model to understand the intrinsically superior reliability of the MOS system consisting of a Ge-based channel and a SiO2/HfO2 dielectric stack. The improved reliability properties here discussed strongly support (Si)Ge technology as a clear frontrunner for future CMOS technology nodes |
Beschreibung: | 1 Online-Ressource (XIX, 187 p.) 219 illus |
ISBN: | 9789400776630 |
DOI: | 10.1007/978-94-007-7663-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV041471115 | ||
003 | DE-604 | ||
005 | 20140122 | ||
007 | cr|uuu---uuuuu | ||
008 | 131210s2014 |||| o||u| ||||||eng d | ||
020 | |a 9789400776630 |9 978-94-007-7663-0 | ||
024 | 7 | |a 10.1007/978-94-007-7663-0 |2 doi | |
035 | |a (OCoLC)874381995 | ||
035 | |a (DE-599)BVBBV041471115 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-Aug4 |a DE-92 |a DE-634 |a DE-859 |a DE-898 |a DE-573 |a DE-861 |a DE-706 |a DE-863 |a DE-862 | ||
082 | 0 | |a 537.622 |2 23 | |
100 | 1 | |a Franco, Jacopo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications |c by Jacopo Franco, Ben Kaczer, Guido Groeseneken |
264 | 1 | |c 2014 | |
300 | |a 1 Online-Ressource (XIX, 187 p.) |b 219 illus | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Springer Series in Advanced Microelectronics |v 47 | |
500 | |a Due to the ever increasing electric fields in scaled CMOS devices, reliability is becoming a showstopper for further scaled technology nodes. Although several groups have already demonstrated functional Si channel devices with aggressively scaled Equivalent Oxide Thickness (EOT) down to 5Å, a 10 year reliable device operation cannot be guaranteed anymore due to severe Negative Bias Temperature Instability. This book focuses on the reliability of the novel (Si)Ge channel quantum well pMOSFET technology. This technology is being considered for possible implementation in next CMOS technology nodes, thanks to its benefit in terms of carrier mobility and device threshold voltage tuning. We observe that it also opens a degree of freedom for device reliability optimization. By properly tuning the device gate stack, sufficiently reliable ultra-thin EOT devices with a 10 years lifetime at operating conditions are demonstrated. The extensive experimental datasets collected on a variety of processed 300mm wafers and presented here show the reliability improvement to be process- and architecture-independent and, as such, readily transferable to advanced device architectures as Tri-Gate (finFET) devices. We propose a physical model to understand the intrinsically superior reliability of the MOS system consisting of a Ge-based channel and a SiO2/HfO2 dielectric stack. The improved reliability properties here discussed strongly support (Si)Ge technology as a clear frontrunner for future CMOS technology nodes | ||
505 | 0 | |a 1 Introduction -- 2 Degradation mechanisms -- 3 Techniques and devices -- 4 Negative Bias Temperature Instability in (Si)Ge pMOSFETs -- 5 Negative Bias Temperature Instability in nanoscale devices -- 6 Channel Hot Carriers and other reliability mechanisms -- 7 Conclusions and perspectives | |
650 | 4 | |a Physics | |
650 | 4 | |a Systems engineering | |
650 | 4 | |a Optical materials | |
650 | 4 | |a Semiconductors | |
650 | 4 | |a Circuits and Systems | |
650 | 4 | |a Optical and Electronic Materials | |
650 | 4 | |a Electronic Circuits and Devices | |
700 | 1 | |a Kaczer, Ben |e Sonstige |4 oth | |
700 | 1 | |a Groeseneken, Guido |e Sonstige |4 oth | |
830 | 0 | |a Springer Series in Advanced Microelectronics |v 47 |w (DE-604)BV041461435 |9 47 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-007-7663-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-ENG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-026917257 | ||
966 | e | |u https://doi.org/10.1007/978-94-007-7663-0 |l BTU01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-94-007-7663-0 |l FHA01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-94-007-7663-0 |l FHI01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-94-007-7663-0 |l FHN01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-94-007-7663-0 |l FHR01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-94-007-7663-0 |l FKE01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-94-007-7663-0 |l FRO01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-94-007-7663-0 |l FWS01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-94-007-7663-0 |l FWS02 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-94-007-7663-0 |l UBY01 |p ZDB-2-ENG |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1016004 |
---|---|
_version_ | 1824553640870805504 |
any_adam_object | |
author | Franco, Jacopo |
author_facet | Franco, Jacopo |
author_role | aut |
author_sort | Franco, Jacopo |
author_variant | j f jf |
building | Verbundindex |
bvnumber | BV041471115 |
collection | ZDB-2-ENG |
contents | 1 Introduction -- 2 Degradation mechanisms -- 3 Techniques and devices -- 4 Negative Bias Temperature Instability in (Si)Ge pMOSFETs -- 5 Negative Bias Temperature Instability in nanoscale devices -- 6 Channel Hot Carriers and other reliability mechanisms -- 7 Conclusions and perspectives |
ctrlnum | (OCoLC)874381995 (DE-599)BVBBV041471115 |
dewey-full | 537.622 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.622 |
dewey-search | 537.622 |
dewey-sort | 3537.622 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-94-007-7663-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04330nmm a2200577zcb4500</leader><controlfield tag="001">BV041471115</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140122 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">131210s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400776630</subfield><subfield code="9">978-94-007-7663-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-007-7663-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874381995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041471115</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537.622</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Franco, Jacopo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications</subfield><subfield code="c">by Jacopo Franco, Ben Kaczer, Guido Groeseneken</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIX, 187 p.)</subfield><subfield code="b">219 illus</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer Series in Advanced Microelectronics</subfield><subfield code="v">47</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Due to the ever increasing electric fields in scaled CMOS devices, reliability is becoming a showstopper for further scaled technology nodes. Although several groups have already demonstrated functional Si channel devices with aggressively scaled Equivalent Oxide Thickness (EOT) down to 5Å, a 10 year reliable device operation cannot be guaranteed anymore due to severe Negative Bias Temperature Instability. This book focuses on the reliability of the novel (Si)Ge channel quantum well pMOSFET technology. This technology is being considered for possible implementation in next CMOS technology nodes, thanks to its benefit in terms of carrier mobility and device threshold voltage tuning. We observe that it also opens a degree of freedom for device reliability optimization. By properly tuning the device gate stack, sufficiently reliable ultra-thin EOT devices with a 10 years lifetime at operating conditions are demonstrated. The extensive experimental datasets collected on a variety of processed 300mm wafers and presented here show the reliability improvement to be process- and architecture-independent and, as such, readily transferable to advanced device architectures as Tri-Gate (finFET) devices. We propose a physical model to understand the intrinsically superior reliability of the MOS system consisting of a Ge-based channel and a SiO2/HfO2 dielectric stack. The improved reliability properties here discussed strongly support (Si)Ge technology as a clear frontrunner for future CMOS technology nodes</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1 Introduction -- 2 Degradation mechanisms -- 3 Techniques and devices -- 4 Negative Bias Temperature Instability in (Si)Ge pMOSFETs -- 5 Negative Bias Temperature Instability in nanoscale devices -- 6 Channel Hot Carriers and other reliability mechanisms -- 7 Conclusions and perspectives</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circuits and Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical and Electronic Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic Circuits and Devices</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaczer, Ben</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Groeseneken, Guido</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer Series in Advanced Microelectronics</subfield><subfield code="v">47</subfield><subfield code="w">(DE-604)BV041461435</subfield><subfield code="9">47</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-007-7663-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026917257</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-007-7663-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-007-7663-0</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-007-7663-0</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-007-7663-0</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-007-7663-0</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-007-7663-0</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-007-7663-0</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-007-7663-0</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-007-7663-0</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-007-7663-0</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV041471115 |
illustrated | Not Illustrated |
indexdate | 2025-02-20T06:39:06Z |
institution | BVB |
isbn | 9789400776630 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026917257 |
oclc_num | 874381995 |
open_access_boolean | |
owner | DE-Aug4 DE-92 DE-634 DE-859 DE-898 DE-BY-UBR DE-573 DE-861 DE-706 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-Aug4 DE-92 DE-634 DE-859 DE-898 DE-BY-UBR DE-573 DE-861 DE-706 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (XIX, 187 p.) 219 illus |
psigel | ZDB-2-ENG |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
record_format | marc |
series | Springer Series in Advanced Microelectronics |
series2 | Springer Series in Advanced Microelectronics |
spellingShingle | Franco, Jacopo Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications Springer Series in Advanced Microelectronics 1 Introduction -- 2 Degradation mechanisms -- 3 Techniques and devices -- 4 Negative Bias Temperature Instability in (Si)Ge pMOSFETs -- 5 Negative Bias Temperature Instability in nanoscale devices -- 6 Channel Hot Carriers and other reliability mechanisms -- 7 Conclusions and perspectives Physics Systems engineering Optical materials Semiconductors Circuits and Systems Optical and Electronic Materials Electronic Circuits and Devices |
title | Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications |
title_auth | Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications |
title_exact_search | Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications |
title_full | Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications by Jacopo Franco, Ben Kaczer, Guido Groeseneken |
title_fullStr | Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications by Jacopo Franco, Ben Kaczer, Guido Groeseneken |
title_full_unstemmed | Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications by Jacopo Franco, Ben Kaczer, Guido Groeseneken |
title_short | Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications |
title_sort | reliability of high mobility sige channel mosfets for future cmos applications |
topic | Physics Systems engineering Optical materials Semiconductors Circuits and Systems Optical and Electronic Materials Electronic Circuits and Devices |
topic_facet | Physics Systems engineering Optical materials Semiconductors Circuits and Systems Optical and Electronic Materials Electronic Circuits and Devices |
url | https://doi.org/10.1007/978-94-007-7663-0 |
volume_link | (DE-604)BV041461435 |
work_keys_str_mv | AT francojacopo reliabilityofhighmobilitysigechannelmosfetsforfuturecmosapplications AT kaczerben reliabilityofhighmobilitysigechannelmosfetsforfuturecmosapplications AT groesenekenguido reliabilityofhighmobilitysigechannelmosfetsforfuturecmosapplications |