Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
2014
|
Schriftenreihe: | Adaptation, Learning, and Optimization
15 |
Schlagworte: | |
Online-Zugang: | BTU01 FHA01 FHI01 FHN01 FHR01 FKE01 FRO01 FWS01 FWS02 UBY01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | For many engineering problems we require optimization processes with dynamic adaptation as we aim to establish the dimension of the search space where the optimum solution resides and develop robust techniques to avoid the local optima usually associated with multimodal problems. This book explores multidimensional particle swarm optimization, a technique developed by the authors that addresses these requirements in a well-defined algorithmic approach. After an introduction to the key optimization techniques, the authors introduce their unified framework and demonstrate its advantages in challenging application domains, focusing on the state of the art of multidimensional extensions such as global convergence in particle swarm optimization, dynamic data clustering, evolutionary neural networks, biomedical applications and personalized ECG classification, content-based image classification and retrieval, and evolutionary feature synthesis. The content is characterized by strong practical considerations, and the book is supported with fully documented source code for all applications presented, as well as many sample datasets. The book will be of benefit to researchers and practitioners working in the areas of machine intelligence, signal processing, pattern recognition, and data mining, or using principles from these areas in their application domains. It may also be used as a reference text for graduate courses on swarm optimization, data clustering and classification, content-based multimedia search, and biomedical signal processing applications |
Beschreibung: | 1 Online-Ressource (XXVIII, 321 p.) 95 illus., 78 illus. in color |
ISBN: | 9783642378461 |
DOI: | 10.1007/978-3-642-37846-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV041471024 | ||
003 | DE-604 | ||
005 | 20141126 | ||
007 | cr|uuu---uuuuu | ||
008 | 131210s2014 |||| o||u| ||||||eng d | ||
020 | |a 9783642378461 |9 978-3-642-37846-1 | ||
024 | 7 | |a 10.1007/978-3-642-37846-1 |2 doi | |
035 | |a (OCoLC)869828179 | ||
035 | |a (DE-599)BVBBV041471024 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-Aug4 |a DE-92 |a DE-634 |a DE-859 |a DE-898 |a DE-573 |a DE-861 |a DE-706 |a DE-863 |a DE-862 | ||
082 | 0 | |a 006.3 |2 23 | |
100 | 1 | |a Kiranyaz, Serkan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition |c by Serkan Kiranyaz, Turker Ince, Moncef Gabbouj |
264 | 1 | |c 2014 | |
300 | |a 1 Online-Ressource (XXVIII, 321 p.) |b 95 illus., 78 illus. in color | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Adaptation, Learning, and Optimization |v 15 | |
500 | |a For many engineering problems we require optimization processes with dynamic adaptation as we aim to establish the dimension of the search space where the optimum solution resides and develop robust techniques to avoid the local optima usually associated with multimodal problems. This book explores multidimensional particle swarm optimization, a technique developed by the authors that addresses these requirements in a well-defined algorithmic approach. After an introduction to the key optimization techniques, the authors introduce their unified framework and demonstrate its advantages in challenging application domains, focusing on the state of the art of multidimensional extensions such as global convergence in particle swarm optimization, dynamic data clustering, evolutionary neural networks, biomedical applications and personalized ECG classification, content-based image classification and retrieval, and evolutionary feature synthesis. The content is characterized by strong practical considerations, and the book is supported with fully documented source code for all applications presented, as well as many sample datasets. The book will be of benefit to researchers and practitioners working in the areas of machine intelligence, signal processing, pattern recognition, and data mining, or using principles from these areas in their application domains. It may also be used as a reference text for graduate courses on swarm optimization, data clustering and classification, content-based multimedia search, and biomedical signal processing applications | ||
505 | 0 | |a Chap. 1 Introduction -- Chap. 2 Optimization Techniques -- Chap. 3 Particle Swarm Optimization -- Chap. 4 Multidimensional Particle Swarm Optimization -- Chap. 5 Improving Global Convergence -- Chap. 6 Dynamic Data Clustering -- Chap. 7 Evolutionary Artificial Neural Networks -- Chap. 8 Personalized ECG Classification -- Chap. 9 Image Classification Through a Collective Network of Binary Classifiers -- Chap. 10 Evolutionary Feature Synthesis for Image Retrieval | |
650 | 4 | |a Computer science | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Engineering | |
650 | 4 | |a Computer engineering | |
650 | 4 | |a Computer Science | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Informatik | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 0 | 7 | |a Partikel-Schwarm-Optimierung |0 (DE-588)7658941-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partikel-Schwarm-Optimierung |0 (DE-588)7658941-9 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ince, Turker |e Sonstige |4 oth | |
700 | 1 | |a Gabbouj, Moncef |e Sonstige |4 oth | |
830 | 0 | |a Adaptation, Learning, and Optimization |v 15 |w (DE-604)BV036521115 |9 15 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-37846-1 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026917166&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026917166&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-ENG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-026917166 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-37846-1 |l BTU01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-37846-1 |l FHA01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-37846-1 |l FHI01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-37846-1 |l FHN01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-37846-1 |l FHR01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-37846-1 |l FKE01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-37846-1 |l FRO01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-37846-1 |l FWS01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-37846-1 |l FWS02 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-37846-1 |l UBY01 |p ZDB-2-ENG |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1015828 |
---|---|
_version_ | 1806174833094950912 |
adam_text | MULTIDIMENSIONAL PARTICLE SWARM OPTIMIZATION FOR MACHINE LEARNING AND
PATTERN RECOGNITION
/ KIRANYAZ, SERKAN
: 2014
TABLE OF CONTENTS / INHALTSVERZEICHNIS
CHAP. 1 INTRODUCTION
CHAP. 2 OPTIMIZATION TECHNIQUES
CHAP. 3 PARTICLE SWARM OPTIMIZATION
CHAP. 4 MULTIDIMENSIONAL PARTICLE SWARM OPTIMIZATION
CHAP. 5 IMPROVING GLOBAL CONVERGENCE
CHAP. 6 DYNAMIC DATA CLUSTERING
CHAP. 7 EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS
CHAP. 8 PERSONALIZED ECG CLASSIFICATION
CHAP. 9 IMAGE CLASSIFICATION THROUGH A COLLECTIVE NETWORK OF BINARY
CLASSIFIERS
CHAP. 10 EVOLUTIONARY FEATURE SYNTHESIS FOR IMAGE RETRIEVAL
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
MULTIDIMENSIONAL PARTICLE SWARM OPTIMIZATION FOR MACHINE LEARNING AND
PATTERN RECOGNITION
/ KIRANYAZ, SERKAN
: 2014
ABSTRACT / INHALTSTEXT
FOR MANY ENGINEERING PROBLEMS WE REQUIRE OPTIMIZATION PROCESSES WITH
DYNAMIC ADAPTATION AS WE AIM TO ESTABLISH THE DIMENSION OF THE SEARCH
SPACE WHERE THE OPTIMUM SOLUTION RESIDES AND DEVELOP ROBUST TECHNIQUES
TO AVOID THE LOCAL OPTIMA USUALLY ASSOCIATED WITH MULTIMODAL PROBLEMS.
THIS BOOK EXPLORES MULTIDIMENSIONAL PARTICLE SWARM OPTIMIZATION, A
TECHNIQUE DEVELOPED BY THE AUTHORS THAT ADDRESSES THESE REQUIREMENTS IN
A WELL-DEFINED ALGORITHMIC APPROACH. AFTER AN INTRODUCTION TO THE KEY
OPTIMIZATION TECHNIQUES, THE AUTHORS INTRODUCE THEIR UNIFIED FRAMEWORK
AND DEMONSTRATE ITS ADVANTAGES IN CHALLENGING APPLICATION DOMAINS,
FOCUSING ON THE STATE OF THE ART OF MULTIDIMENSIONAL EXTENSIONS SUCH AS
GLOBAL CONVERGENCE IN PARTICLE SWARM OPTIMIZATION, DYNAMIC DATA
CLUSTERING, EVOLUTIONARY NEURAL NETWORKS, BIOMEDICAL APPLICATIONS AND
PERSONALIZED ECG CLASSIFICATION, CONTENT-BASED IMAGE CLASSIFICATION AND
RETRIEVAL, AND EVOLUTIONARY FEATURE SYNTHESIS. THE CONTENT IS
CHARACTERIZED BY STRONG PRACTICAL CONSIDERATIONS, AND THE BOOK IS
SUPPORTED WITH FULLY DOCUMENTED SOURCE CODE FOR ALL APPLICATIONS
PRESENTED, AS WELL AS MANY SAMPLE DATASETS. THE BOOK WILL BE OF
BENEFIT TO RESEARCHERS AND PRACTITIONERS WORKING IN THE AREAS OF MACHINE
INTELLIGENCE, SIGNAL PROCESSING, PATTERN RECOGNITION, AND DATA MINING,
OR USING PRINCIPLES FROM THESE AREAS IN THEIR APPLICATION DOMAINS. IT
MAY ALSO BE USED AS A REFERENCE TEXT FOR GRADUATE COURSES ON SWARM
OPTIMIZATION, DATA CLUSTERING AND CLASSIFICATION, CONTENT-BASED
MULTIMEDIA SEARCH, AND BIOMEDICAL SIGNAL PROCESSING APPLICATIONS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Kiranyaz, Serkan |
author_facet | Kiranyaz, Serkan |
author_role | aut |
author_sort | Kiranyaz, Serkan |
author_variant | s k sk |
building | Verbundindex |
bvnumber | BV041471024 |
collection | ZDB-2-ENG |
contents | Chap. 1 Introduction -- Chap. 2 Optimization Techniques -- Chap. 3 Particle Swarm Optimization -- Chap. 4 Multidimensional Particle Swarm Optimization -- Chap. 5 Improving Global Convergence -- Chap. 6 Dynamic Data Clustering -- Chap. 7 Evolutionary Artificial Neural Networks -- Chap. 8 Personalized ECG Classification -- Chap. 9 Image Classification Through a Collective Network of Binary Classifiers -- Chap. 10 Evolutionary Feature Synthesis for Image Retrieval |
ctrlnum | (OCoLC)869828179 (DE-599)BVBBV041471024 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-3-642-37846-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05662nmm a2200733zcb4500</leader><controlfield tag="001">BV041471024</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141126 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">131210s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642378461</subfield><subfield code="9">978-3-642-37846-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-37846-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869828179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041471024</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kiranyaz, Serkan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition</subfield><subfield code="c">by Serkan Kiranyaz, Turker Ince, Moncef Gabbouj</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXVIII, 321 p.)</subfield><subfield code="b">95 illus., 78 illus. in color</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Adaptation, Learning, and Optimization</subfield><subfield code="v">15</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">For many engineering problems we require optimization processes with dynamic adaptation as we aim to establish the dimension of the search space where the optimum solution resides and develop robust techniques to avoid the local optima usually associated with multimodal problems. This book explores multidimensional particle swarm optimization, a technique developed by the authors that addresses these requirements in a well-defined algorithmic approach. After an introduction to the key optimization techniques, the authors introduce their unified framework and demonstrate its advantages in challenging application domains, focusing on the state of the art of multidimensional extensions such as global convergence in particle swarm optimization, dynamic data clustering, evolutionary neural networks, biomedical applications and personalized ECG classification, content-based image classification and retrieval, and evolutionary feature synthesis. The content is characterized by strong practical considerations, and the book is supported with fully documented source code for all applications presented, as well as many sample datasets. The book will be of benefit to researchers and practitioners working in the areas of machine intelligence, signal processing, pattern recognition, and data mining, or using principles from these areas in their application domains. It may also be used as a reference text for graduate courses on swarm optimization, data clustering and classification, content-based multimedia search, and biomedical signal processing applications</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Chap. 1 Introduction -- Chap. 2 Optimization Techniques -- Chap. 3 Particle Swarm Optimization -- Chap. 4 Multidimensional Particle Swarm Optimization -- Chap. 5 Improving Global Convergence -- Chap. 6 Dynamic Data Clustering -- Chap. 7 Evolutionary Artificial Neural Networks -- Chap. 8 Personalized ECG Classification -- Chap. 9 Image Classification Through a Collective Network of Binary Classifiers -- Chap. 10 Evolutionary Feature Synthesis for Image Retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partikel-Schwarm-Optimierung</subfield><subfield code="0">(DE-588)7658941-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partikel-Schwarm-Optimierung</subfield><subfield code="0">(DE-588)7658941-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ince, Turker</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gabbouj, Moncef</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Adaptation, Learning, and Optimization</subfield><subfield code="v">15</subfield><subfield code="w">(DE-604)BV036521115</subfield><subfield code="9">15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-37846-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026917166&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026917166&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026917166</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-37846-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-37846-1</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-37846-1</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-37846-1</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-37846-1</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-37846-1</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-37846-1</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-37846-1</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-37846-1</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-37846-1</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV041471024 |
illustrated | Illustrated |
indexdate | 2024-08-01T10:55:48Z |
institution | BVB |
isbn | 9783642378461 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026917166 |
oclc_num | 869828179 |
open_access_boolean | |
owner | DE-Aug4 DE-92 DE-634 DE-859 DE-898 DE-BY-UBR DE-573 DE-861 DE-706 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-Aug4 DE-92 DE-634 DE-859 DE-898 DE-BY-UBR DE-573 DE-861 DE-706 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (XXVIII, 321 p.) 95 illus., 78 illus. in color |
psigel | ZDB-2-ENG |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
record_format | marc |
series | Adaptation, Learning, and Optimization |
series2 | Adaptation, Learning, and Optimization |
spellingShingle | Kiranyaz, Serkan Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition Adaptation, Learning, and Optimization Chap. 1 Introduction -- Chap. 2 Optimization Techniques -- Chap. 3 Particle Swarm Optimization -- Chap. 4 Multidimensional Particle Swarm Optimization -- Chap. 5 Improving Global Convergence -- Chap. 6 Dynamic Data Clustering -- Chap. 7 Evolutionary Artificial Neural Networks -- Chap. 8 Personalized ECG Classification -- Chap. 9 Image Classification Through a Collective Network of Binary Classifiers -- Chap. 10 Evolutionary Feature Synthesis for Image Retrieval Computer science Artificial intelligence Engineering Computer engineering Computer Science Artificial Intelligence (incl. Robotics) Computational Intelligence Electrical Engineering Informatik Ingenieurwissenschaften Künstliche Intelligenz Partikel-Schwarm-Optimierung (DE-588)7658941-9 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Mustererkennung (DE-588)4040936-3 gnd |
subject_GND | (DE-588)7658941-9 (DE-588)4193754-5 (DE-588)4040936-3 |
title | Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition |
title_auth | Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition |
title_exact_search | Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition |
title_full | Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition by Serkan Kiranyaz, Turker Ince, Moncef Gabbouj |
title_fullStr | Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition by Serkan Kiranyaz, Turker Ince, Moncef Gabbouj |
title_full_unstemmed | Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition by Serkan Kiranyaz, Turker Ince, Moncef Gabbouj |
title_short | Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition |
title_sort | multidimensional particle swarm optimization for machine learning and pattern recognition |
topic | Computer science Artificial intelligence Engineering Computer engineering Computer Science Artificial Intelligence (incl. Robotics) Computational Intelligence Electrical Engineering Informatik Ingenieurwissenschaften Künstliche Intelligenz Partikel-Schwarm-Optimierung (DE-588)7658941-9 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Mustererkennung (DE-588)4040936-3 gnd |
topic_facet | Computer science Artificial intelligence Engineering Computer engineering Computer Science Artificial Intelligence (incl. Robotics) Computational Intelligence Electrical Engineering Informatik Ingenieurwissenschaften Künstliche Intelligenz Partikel-Schwarm-Optimierung Maschinelles Lernen Mustererkennung |
url | https://doi.org/10.1007/978-3-642-37846-1 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026917166&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026917166&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV036521115 |
work_keys_str_mv | AT kiranyazserkan multidimensionalparticleswarmoptimizationformachinelearningandpatternrecognition AT inceturker multidimensionalparticleswarmoptimizationformachinelearningandpatternrecognition AT gabboujmoncef multidimensionalparticleswarmoptimizationformachinelearningandpatternrecognition |