Nature Inspired Cooperative Strategies for Optimization (NICSO 2013): Learning, Optimization and Interdisciplinary Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
2014
|
Schriftenreihe: | Studies in Computational Intelligence
512 |
Schlagworte: | |
Online-Zugang: | BTU01 FHA01 FHI01 FHN01 FHR01 FKE01 FRO01 FWS01 FWS02 UBY01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | Biological and other natural processes have always been a source of inspiration for computer science and information technology. Many emerging problem solving techniques integrate advanced evolution and cooperation strategies, encompassing a range of spatio-temporal scales for visionary conceptualization of evolutionary computation. This book is a collection of research works presented in the VI International Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO) held in Canterbury, UK. Previous editions of NICSO were held in Granada, Spain (2006 & 2010), Acireale, Italy (2007), Tenerife, Spain (2008), and Cluj-Napoca, Romania (2011). NICSO 2013 and this book provides a place where state-of-the-art research, latest ideas and emerging areas of nature inspired cooperative strategies for problem solving are vigorously discussed and exchanged among the scientific community. The breadth and variety of articles in this book report on nature inspired methods and applications such as Swarm Intelligence, Hyper-heuristics, Evolutionary Algorithms, Cellular Automata, Artificial Bee Colony, Dynamic Optimization, Support Vector Machines, Multi-Agent Systems, Ant Clustering, Evolutionary Design Optimisation, Game Theory and other several Cooperation Models |
Beschreibung: | 1 Online-Ressource (XIV, 355 p.) 82 illus., 12 illus. in color |
ISBN: | 9783319016924 |
DOI: | 10.1007/978-3-319-01692-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV041470960 | ||
003 | DE-604 | ||
005 | 20170630 | ||
007 | cr|uuu---uuuuu | ||
008 | 131210s2014 |||| o||u| ||||||eng d | ||
020 | |a 9783319016924 |9 978-3-319-01692-4 | ||
024 | 7 | |a 10.1007/978-3-319-01692-4 |2 doi | |
035 | |a (OCoLC)874381555 | ||
035 | |a (DE-599)BVBBV041470960 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-Aug4 |a DE-92 |a DE-634 |a DE-859 |a DE-898 |a DE-573 |a DE-861 |a DE-706 |a DE-863 |a DE-862 | ||
082 | 0 | |a 006.3 |2 23 | |
100 | 1 | |a Terrazas, German |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nature Inspired Cooperative Strategies for Optimization (NICSO 2013) |b Learning, Optimization and Interdisciplinary Applications |c edited by German Terrazas, Fernando E. B. Otero, Antonio D. Masegosa |
264 | 1 | |c 2014 | |
300 | |a 1 Online-Ressource (XIV, 355 p.) |b 82 illus., 12 illus. in color | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Studies in Computational Intelligence |v 512 | |
500 | |a Biological and other natural processes have always been a source of inspiration for computer science and information technology. Many emerging problem solving techniques integrate advanced evolution and cooperation strategies, encompassing a range of spatio-temporal scales for visionary conceptualization of evolutionary computation. This book is a collection of research works presented in the VI International Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO) held in Canterbury, UK. Previous editions of NICSO were held in Granada, Spain (2006 & 2010), Acireale, Italy (2007), Tenerife, Spain (2008), and Cluj-Napoca, Romania (2011). NICSO 2013 and this book provides a place where state-of-the-art research, latest ideas and emerging areas of nature inspired cooperative strategies for problem solving are vigorously discussed and exchanged among the scientific community. The breadth and variety of articles in this book report on nature inspired methods and applications such as Swarm Intelligence, Hyper-heuristics, Evolutionary Algorithms, Cellular Automata, Artificial Bee Colony, Dynamic Optimization, Support Vector Machines, Multi-Agent Systems, Ant Clustering, Evolutionary Design Optimisation, Game Theory and other several Cooperation Models | ||
505 | 0 | |a Extending the ABC-Miner Bayesian Classification Algorithm -- A Multiple Pheromone Ant Clustering Algorithm -- An Island Memetic Differential Evolution Algorithm for the Feature Selection Problem -- Using a Scouting Predator-Prey Optimizer to Train Support Vector Machines with non PSD Kernels -- Response Surfaces with Discounted Information for Global Optima Tracking in Dynamic Environments -- Fitness based Self Adaptive Differential -- Adaptation schemes and dynamic optimization problems: a basic study on the Adaptive Hill Climbing Memetic Algorithm -- Using base position errors in an entropy-based evaluation function for the study of genetic code adaptability -- An Adaptive Multi-Crossover Population Algorithm for Solving Routing Problems -- Corner Based Many-Objective Optimization -- Escaping Local Optima via Parallelization and -- An Improved Genetic Based Keyword Extraction Technique -- Part-of-Speech Tagging Using Evolutionary Computation -- A Cooperative approach using ants and bees for the graph coloring problem -- Artificial Bee Colony Training of Neural Networks -- Nonlinar optimization in landscapes with planar regions -- Optimizing Neighbourhood Distances for a Variant of Fully-Informed Particle Swarm Algorithm -- Meta Morphic Particle Swarm Optimization -- Empirical study of computational intelligence strategies for biochemical systems modelling -- Metachronal waves in Cellular Automata: Cilia-like manipulation in actuator arrays -- Team of A-Teams Approach for Vehicle Routing Problem with Time Windows -- Self-adaptable Group Formation of Reconfigurable Agents in Dynamic Environments -- A Choice Function Hyper-Heuristic for the Winner Determination Problem -- Automatic Generation of Heuristics for Constraint Satisfaction Problems -- Branching Schemes and Variable Ordering Heuristics for Constraint Satisfaction Problems: Is there Something to Learn -- Nash Equilibria Detection for Discrete-time Generalized Cournot Dynamic Oligopolies | |
650 | 4 | |a Engineering | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Künstliche Intelligenz | |
700 | 1 | |a Otero, Fernando E. B. |e Sonstige |4 oth | |
700 | 1 | |a Masegosa, Antonio D. |d 1982- |e Sonstige |0 (DE-588)1136139850 |4 oth | |
830 | 0 | |a Studies in Computational Intelligence |v 512 |w (DE-604)BV020822171 |9 512 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-01692-4 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026917103&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026917103&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-ENG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-026917103 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-01692-4 |l BTU01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-01692-4 |l FHA01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-01692-4 |l FHI01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-01692-4 |l FHN01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-01692-4 |l FHR01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-01692-4 |l FKE01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-01692-4 |l FRO01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-01692-4 |l FWS01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-01692-4 |l FWS02 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-01692-4 |l UBY01 |p ZDB-2-ENG |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1015843 |
---|---|
_version_ | 1806174832889430016 |
adam_text | NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION (NICSO 2013)
/
: 2014
TABLE OF CONTENTS / INHALTSVERZEICHNIS
EXTENDING THE ABC-MINER BAYESIAN CLASSIFICATION ALGORITHM
A MULTIPLE PHEROMONE ANT CLUSTERING ALGORITHM
AN ISLAND MEMETIC DIFFERENTIAL EVOLUTION ALGORITHM FOR THE FEATURE
SELECTION PROBLEM
USING A SCOUTING PREDATOR-PREY OPTIMIZER TO TRAIN SUPPORT VECTOR
MACHINES WITH NON PSD KERNELS
RESPONSE SURFACES WITH DISCOUNTED INFORMATION FOR GLOBAL OPTIMA TRACKING
IN DYNAMIC ENVIRONMENTS
FITNESS BASED SELF ADAPTIVE DIFFERENTIAL
ADAPTATION SCHEMES AND DYNAMIC OPTIMIZATION PROBLEMS: A BASIC STUDY ON
THE ADAPTIVE HILL CLIMBING MEMETIC ALGORITHM
USING BASE POSITION ERRORS IN AN ENTROPY-BASED EVALUATION FUNCTION FOR
THE STUDY OF GENETIC CODE ADAPTABILITY
AN ADAPTIVE MULTI-CROSSOVER POPULATION ALGORITHM FOR SOLVING ROUTING
PROBLEMS
CORNER BASED MANY-OBJECTIVE OPTIMIZATION
ESCAPING LOCAL OPTIMA VIA PARALLELIZATION AND
AN IMPROVED GENETIC BASED KEYWORD EXTRACTION TECHNIQUE
PART-OF-SPEECH TAGGING USING EVOLUTIONARY COMPUTATION
A COOPERATIVE APPROACH USING ANTS AND BEES FOR THE GRAPH COLORING
PROBLEM
ARTIFICIAL BEE COLONY TRAINING OF NEURAL NETWORKS
NONLINAR OPTIMIZATION IN LANDSCAPES WITH PLANAR REGIONS
OPTIMIZING NEIGHBOURHOOD DISTANCES FOR A VARIANT OF FULLY-INFORMED
PARTICLE SWARM ALGORITHM
META MORPHIC PARTICLE SWARM OPTIMIZATION
EMPIRICAL STUDY OF COMPUTATIONAL INTELLIGENCE STRATEGIES FOR BIOCHEMICAL
SYSTEMS MODELLING
METACHRONAL WAVES IN CELLULAR AUTOMATA: CILIA-LIKE MANIPULATION IN
ACTUATOR ARRAYS
TEAM OF A-TEAMS APPROACH FOR VEHICLE ROUTING PROBLEM WITH TIME WINDOWS
SELF-ADAPTABLE GROUP FORMATION OF RECONFIGURABLE AGENTS IN DYNAMIC
ENVIRONMENTS
A CHOICE FUNCTION HYPER-HEURISTIC FOR THE WINNER DETERMINATION PROBLEM
AUTOMATIC GENERATION OF HEURISTICS FOR CONSTRAINT SATISFACTION PROBLEMS
BRANCHING SCHEMES AND VARIABLE ORDERING HEURISTICS FOR CONSTRAINT
SATISFACTION PROBLEMS: IS THERE SOMETHING TO LEARN
NASH EQUILIBRIA DETECTION FOR DISCRETE-TIME GENERALIZED COURNOT DYNAMIC
OLIGOPOLIES
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION (NICSO 2013)
/
: 2014
ABSTRACT / INHALTSTEXT
BIOLOGICAL AND OTHER NATURAL PROCESSES HAVE ALWAYS BEEN A SOURCE OF
INSPIRATION FOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY. MANY
EMERGING PROBLEM SOLVING TECHNIQUES INTEGRATE ADVANCED EVOLUTION AND
COOPERATION STRATEGIES, ENCOMPASSING A RANGE OF SPATIO-TEMPORAL SCALES
FOR VISIONARY CONCEPTUALIZATION OF EVOLUTIONARY COMPUTATION. THIS BOOK
IS A COLLECTION OF RESEARCH WORKS PRESENTED IN THE VI INTERNATIONAL
WORKSHOP ON NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION
(NICSO) HELD IN CANTERBURY, UK. PREVIOUS EDITIONS OF NICSO WERE HELD IN
GRANADA, SPAIN (2006 & 2010), ACIREALE, ITALY (2007), TENERIFE, SPAIN
(2008), AND CLUJ-NAPOCA, ROMANIA (2011). NICSO 2013 AND THIS BOOK
PROVIDES A PLACE WHERE STATE-OF-THE-ART RESEARCH, LATEST IDEAS AND
EMERGING AREAS OF NATURE INSPIRED COOPERATIVE STRATEGIES FOR PROBLEM
SOLVING ARE VIGOROUSLY DISCUSSED AND EXCHANGED AMONG THE SCIENTIFIC
COMMUNITY. THE BREADTH AND VARIETY OF ARTICLES IN THIS BOOK REPORT ON
NATURE INSPIRED METHODS AND APPLICATIONS SUCH AS SWARM INTELLIGENCE,
HYPER-HEURISTICS, EVOLUTIONARY ALGORITHMS, CELLULAR AUTOMATA, ARTIFICIAL
BEE COLONY, DYNAMIC OPTIMIZATION, SUPPORT VECTOR MACHINES, MULTI-AGENT
SYSTEMS, ANT CLUSTERING, EVOLUTIONARY DESIGN OPTIMISATION, GAME THEORY
AND OTHER SEVERAL COOPERATION MODELS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Terrazas, German |
author_GND | (DE-588)1136139850 |
author_facet | Terrazas, German |
author_role | aut |
author_sort | Terrazas, German |
author_variant | g t gt |
building | Verbundindex |
bvnumber | BV041470960 |
collection | ZDB-2-ENG |
contents | Extending the ABC-Miner Bayesian Classification Algorithm -- A Multiple Pheromone Ant Clustering Algorithm -- An Island Memetic Differential Evolution Algorithm for the Feature Selection Problem -- Using a Scouting Predator-Prey Optimizer to Train Support Vector Machines with non PSD Kernels -- Response Surfaces with Discounted Information for Global Optima Tracking in Dynamic Environments -- Fitness based Self Adaptive Differential -- Adaptation schemes and dynamic optimization problems: a basic study on the Adaptive Hill Climbing Memetic Algorithm -- Using base position errors in an entropy-based evaluation function for the study of genetic code adaptability -- An Adaptive Multi-Crossover Population Algorithm for Solving Routing Problems -- Corner Based Many-Objective Optimization -- Escaping Local Optima via Parallelization and -- An Improved Genetic Based Keyword Extraction Technique -- Part-of-Speech Tagging Using Evolutionary Computation -- A Cooperative approach using ants and bees for the graph coloring problem -- Artificial Bee Colony Training of Neural Networks -- Nonlinar optimization in landscapes with planar regions -- Optimizing Neighbourhood Distances for a Variant of Fully-Informed Particle Swarm Algorithm -- Meta Morphic Particle Swarm Optimization -- Empirical study of computational intelligence strategies for biochemical systems modelling -- Metachronal waves in Cellular Automata: Cilia-like manipulation in actuator arrays -- Team of A-Teams Approach for Vehicle Routing Problem with Time Windows -- Self-adaptable Group Formation of Reconfigurable Agents in Dynamic Environments -- A Choice Function Hyper-Heuristic for the Winner Determination Problem -- Automatic Generation of Heuristics for Constraint Satisfaction Problems -- Branching Schemes and Variable Ordering Heuristics for Constraint Satisfaction Problems: Is there Something to Learn -- Nash Equilibria Detection for Discrete-time Generalized Cournot Dynamic Oligopolies |
ctrlnum | (OCoLC)874381555 (DE-599)BVBBV041470960 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-3-319-01692-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06392nmm a2200589zcb4500</leader><controlfield tag="001">BV041470960</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170630 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">131210s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319016924</subfield><subfield code="9">978-3-319-01692-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-01692-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874381555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041470960</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Terrazas, German</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nature Inspired Cooperative Strategies for Optimization (NICSO 2013)</subfield><subfield code="b">Learning, Optimization and Interdisciplinary Applications</subfield><subfield code="c">edited by German Terrazas, Fernando E. B. Otero, Antonio D. Masegosa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 355 p.)</subfield><subfield code="b">82 illus., 12 illus. in color</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies in Computational Intelligence</subfield><subfield code="v">512</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Biological and other natural processes have always been a source of inspiration for computer science and information technology. Many emerging problem solving techniques integrate advanced evolution and cooperation strategies, encompassing a range of spatio-temporal scales for visionary conceptualization of evolutionary computation. This book is a collection of research works presented in the VI International Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO) held in Canterbury, UK. Previous editions of NICSO were held in Granada, Spain (2006 & 2010), Acireale, Italy (2007), Tenerife, Spain (2008), and Cluj-Napoca, Romania (2011). NICSO 2013 and this book provides a place where state-of-the-art research, latest ideas and emerging areas of nature inspired cooperative strategies for problem solving are vigorously discussed and exchanged among the scientific community. The breadth and variety of articles in this book report on nature inspired methods and applications such as Swarm Intelligence, Hyper-heuristics, Evolutionary Algorithms, Cellular Automata, Artificial Bee Colony, Dynamic Optimization, Support Vector Machines, Multi-Agent Systems, Ant Clustering, Evolutionary Design Optimisation, Game Theory and other several Cooperation Models</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Extending the ABC-Miner Bayesian Classification Algorithm -- A Multiple Pheromone Ant Clustering Algorithm -- An Island Memetic Differential Evolution Algorithm for the Feature Selection Problem -- Using a Scouting Predator-Prey Optimizer to Train Support Vector Machines with non PSD Kernels -- Response Surfaces with Discounted Information for Global Optima Tracking in Dynamic Environments -- Fitness based Self Adaptive Differential -- Adaptation schemes and dynamic optimization problems: a basic study on the Adaptive Hill Climbing Memetic Algorithm -- Using base position errors in an entropy-based evaluation function for the study of genetic code adaptability -- An Adaptive Multi-Crossover Population Algorithm for Solving Routing Problems -- Corner Based Many-Objective Optimization -- Escaping Local Optima via Parallelization and -- An Improved Genetic Based Keyword Extraction Technique -- Part-of-Speech Tagging Using Evolutionary Computation -- A Cooperative approach using ants and bees for the graph coloring problem -- Artificial Bee Colony Training of Neural Networks -- Nonlinar optimization in landscapes with planar regions -- Optimizing Neighbourhood Distances for a Variant of Fully-Informed Particle Swarm Algorithm -- Meta Morphic Particle Swarm Optimization -- Empirical study of computational intelligence strategies for biochemical systems modelling -- Metachronal waves in Cellular Automata: Cilia-like manipulation in actuator arrays -- Team of A-Teams Approach for Vehicle Routing Problem with Time Windows -- Self-adaptable Group Formation of Reconfigurable Agents in Dynamic Environments -- A Choice Function Hyper-Heuristic for the Winner Determination Problem -- Automatic Generation of Heuristics for Constraint Satisfaction Problems -- Branching Schemes and Variable Ordering Heuristics for Constraint Satisfaction Problems: Is there Something to Learn -- Nash Equilibria Detection for Discrete-time Generalized Cournot Dynamic Oligopolies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Otero, Fernando E. B.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Masegosa, Antonio D.</subfield><subfield code="d">1982-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1136139850</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies in Computational Intelligence</subfield><subfield code="v">512</subfield><subfield code="w">(DE-604)BV020822171</subfield><subfield code="9">512</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-01692-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026917103&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026917103&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026917103</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-01692-4</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-01692-4</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-01692-4</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-01692-4</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-01692-4</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-01692-4</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-01692-4</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-01692-4</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-01692-4</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-01692-4</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV041470960 |
illustrated | Illustrated |
indexdate | 2024-08-01T10:55:48Z |
institution | BVB |
isbn | 9783319016924 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026917103 |
oclc_num | 874381555 |
open_access_boolean | |
owner | DE-Aug4 DE-92 DE-634 DE-859 DE-898 DE-BY-UBR DE-573 DE-861 DE-706 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-Aug4 DE-92 DE-634 DE-859 DE-898 DE-BY-UBR DE-573 DE-861 DE-706 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (XIV, 355 p.) 82 illus., 12 illus. in color |
psigel | ZDB-2-ENG |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
record_format | marc |
series | Studies in Computational Intelligence |
series2 | Studies in Computational Intelligence |
spellingShingle | Terrazas, German Nature Inspired Cooperative Strategies for Optimization (NICSO 2013) Learning, Optimization and Interdisciplinary Applications Studies in Computational Intelligence Extending the ABC-Miner Bayesian Classification Algorithm -- A Multiple Pheromone Ant Clustering Algorithm -- An Island Memetic Differential Evolution Algorithm for the Feature Selection Problem -- Using a Scouting Predator-Prey Optimizer to Train Support Vector Machines with non PSD Kernels -- Response Surfaces with Discounted Information for Global Optima Tracking in Dynamic Environments -- Fitness based Self Adaptive Differential -- Adaptation schemes and dynamic optimization problems: a basic study on the Adaptive Hill Climbing Memetic Algorithm -- Using base position errors in an entropy-based evaluation function for the study of genetic code adaptability -- An Adaptive Multi-Crossover Population Algorithm for Solving Routing Problems -- Corner Based Many-Objective Optimization -- Escaping Local Optima via Parallelization and -- An Improved Genetic Based Keyword Extraction Technique -- Part-of-Speech Tagging Using Evolutionary Computation -- A Cooperative approach using ants and bees for the graph coloring problem -- Artificial Bee Colony Training of Neural Networks -- Nonlinar optimization in landscapes with planar regions -- Optimizing Neighbourhood Distances for a Variant of Fully-Informed Particle Swarm Algorithm -- Meta Morphic Particle Swarm Optimization -- Empirical study of computational intelligence strategies for biochemical systems modelling -- Metachronal waves in Cellular Automata: Cilia-like manipulation in actuator arrays -- Team of A-Teams Approach for Vehicle Routing Problem with Time Windows -- Self-adaptable Group Formation of Reconfigurable Agents in Dynamic Environments -- A Choice Function Hyper-Heuristic for the Winner Determination Problem -- Automatic Generation of Heuristics for Constraint Satisfaction Problems -- Branching Schemes and Variable Ordering Heuristics for Constraint Satisfaction Problems: Is there Something to Learn -- Nash Equilibria Detection for Discrete-time Generalized Cournot Dynamic Oligopolies Engineering Artificial intelligence Computational Intelligence Artificial Intelligence (incl. Robotics) Ingenieurwissenschaften Künstliche Intelligenz |
title | Nature Inspired Cooperative Strategies for Optimization (NICSO 2013) Learning, Optimization and Interdisciplinary Applications |
title_auth | Nature Inspired Cooperative Strategies for Optimization (NICSO 2013) Learning, Optimization and Interdisciplinary Applications |
title_exact_search | Nature Inspired Cooperative Strategies for Optimization (NICSO 2013) Learning, Optimization and Interdisciplinary Applications |
title_full | Nature Inspired Cooperative Strategies for Optimization (NICSO 2013) Learning, Optimization and Interdisciplinary Applications edited by German Terrazas, Fernando E. B. Otero, Antonio D. Masegosa |
title_fullStr | Nature Inspired Cooperative Strategies for Optimization (NICSO 2013) Learning, Optimization and Interdisciplinary Applications edited by German Terrazas, Fernando E. B. Otero, Antonio D. Masegosa |
title_full_unstemmed | Nature Inspired Cooperative Strategies for Optimization (NICSO 2013) Learning, Optimization and Interdisciplinary Applications edited by German Terrazas, Fernando E. B. Otero, Antonio D. Masegosa |
title_short | Nature Inspired Cooperative Strategies for Optimization (NICSO 2013) |
title_sort | nature inspired cooperative strategies for optimization nicso 2013 learning optimization and interdisciplinary applications |
title_sub | Learning, Optimization and Interdisciplinary Applications |
topic | Engineering Artificial intelligence Computational Intelligence Artificial Intelligence (incl. Robotics) Ingenieurwissenschaften Künstliche Intelligenz |
topic_facet | Engineering Artificial intelligence Computational Intelligence Artificial Intelligence (incl. Robotics) Ingenieurwissenschaften Künstliche Intelligenz |
url | https://doi.org/10.1007/978-3-319-01692-4 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026917103&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026917103&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV020822171 |
work_keys_str_mv | AT terrazasgerman natureinspiredcooperativestrategiesforoptimizationnicso2013learningoptimizationandinterdisciplinaryapplications AT oterofernandoeb natureinspiredcooperativestrategiesforoptimizationnicso2013learningoptimizationandinterdisciplinaryapplications AT masegosaantoniod natureinspiredcooperativestrategiesforoptimizationnicso2013learningoptimizationandinterdisciplinaryapplications |