Multi-scale analysis for random quantum systems with interaction:
The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems wi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
Birkhäuser
2014
|
Schriftenreihe: | Progress in mathematical physics
65 |
Schlagworte: | |
Online-Zugang: | BTU01 FRO01 TUM01 UBA01 UBM01 UBT01 UBW01 UPA01 Volltext |
Zusammenfassung: | The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd |
Beschreibung: | Single-particle Localisation -- A Brief History of Anderson Localization.- Single-Particle MSA Techniques -- Multi-particle Localization -- Multi-particle Eigenvalue Concentration Bounds -- Multi-particle MSA Techniques Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (XI, 238 S.) graph. Darst. |
ISBN: | 9781461482253 9781461482260 |
DOI: | 10.1007/978-1-4614-8226-0 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV041461950 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 131205s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781461482253 |9 978-1-4614-8225-3 | ||
020 | |a 9781461482260 |c ebook |9 978-1-4614-8226-0 | ||
024 | 7 | |a 10.1007/978-1-4614-8226-0 |2 doi | |
035 | |a (OCoLC)874380072 | ||
035 | |a (DE-599)BVBBV041461950 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 |a DE-739 |a DE-20 |a DE-19 |a DE-634 |a DE-861 |a DE-384 |a DE-83 | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UL 1000 |0 (DE-625)145815: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Čulaevskij, V. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multi-scale analysis for random quantum systems with interaction |c Victor Chulaevsky ; Yuri Suhov |
264 | 1 | |a New York |b Birkhäuser |c 2014 | |
300 | |a 1 Online-Ressource (XI, 238 S.) |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in mathematical physics |v 65 | |
500 | |a Single-particle Localisation -- A Brief History of Anderson Localization.- Single-Particle MSA Techniques -- Multi-particle Localization -- Multi-particle Eigenvalue Concentration Bounds -- Multi-particle MSA Techniques | ||
500 | |a Includes bibliographical references and index | ||
520 | |a The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd | ||
650 | 4 | |a Multiscale modeling | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Applications of Mathematics | |
650 | 0 | 7 | |a Vielteilchensystem |0 (DE-588)4063491-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrskalenanalyse |0 (DE-588)4416235-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |D s |
689 | 0 | 1 | |a Mehrskalenanalyse |0 (DE-588)4416235-2 |D s |
689 | 0 | 2 | |a Vielteilchensystem |0 (DE-588)4063491-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Suchov, Jurij M. |e Verfasser |4 aut | |
830 | 0 | |a Progress in mathematical physics |v 65 |w (DE-604)BV035421269 |9 65 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4614-8226-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-026908292 | ||
966 | e | |u https://doi.org/10.1007/978-1-4614-8226-0 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4614-8226-0 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4614-8226-0 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4614-8226-0 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4614-8226-0 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4614-8226-0 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4614-8226-0 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4614-8226-0 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804151592488796161 |
---|---|
any_adam_object | |
author | Čulaevskij, V. A. Suchov, Jurij M. |
author_facet | Čulaevskij, V. A. Suchov, Jurij M. |
author_role | aut aut |
author_sort | Čulaevskij, V. A. |
author_variant | v a č va vač j m s jm jms |
building | Verbundindex |
bvnumber | BV041461950 |
classification_rvk | SK 950 UL 1000 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)874380072 (DE-599)BVBBV041461950 |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-1-4614-8226-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03966nmm a2200649 cb4500</leader><controlfield tag="001">BV041461950</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">131205s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461482253</subfield><subfield code="9">978-1-4614-8225-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461482260</subfield><subfield code="c">ebook</subfield><subfield code="9">978-1-4614-8226-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4614-8226-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874380072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041461950</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UL 1000</subfield><subfield code="0">(DE-625)145815:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Čulaevskij, V. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-scale analysis for random quantum systems with interaction</subfield><subfield code="c">Victor Chulaevsky ; Yuri Suhov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 238 S.)</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematical physics</subfield><subfield code="v">65</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Single-particle Localisation -- A Brief History of Anderson Localization.- Single-Particle MSA Techniques -- Multi-particle Localization -- Multi-particle Eigenvalue Concentration Bounds -- Multi-particle MSA Techniques</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiscale modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielteilchensystem</subfield><subfield code="0">(DE-588)4063491-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrskalenanalyse</subfield><subfield code="0">(DE-588)4416235-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrskalenanalyse</subfield><subfield code="0">(DE-588)4416235-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Vielteilchensystem</subfield><subfield code="0">(DE-588)4063491-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suchov, Jurij M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematical physics</subfield><subfield code="v">65</subfield><subfield code="w">(DE-604)BV035421269</subfield><subfield code="9">65</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4614-8226-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026908292</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4614-8226-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4614-8226-0</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4614-8226-0</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4614-8226-0</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4614-8226-0</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4614-8226-0</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4614-8226-0</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4614-8226-0</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV041461950 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:57:16Z |
institution | BVB |
isbn | 9781461482253 9781461482260 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026908292 |
oclc_num | 874380072 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM DE-739 DE-20 DE-19 DE-BY-UBM DE-634 DE-861 DE-384 DE-83 |
owner_facet | DE-703 DE-91 DE-BY-TUM DE-739 DE-20 DE-19 DE-BY-UBM DE-634 DE-861 DE-384 DE-83 |
physical | 1 Online-Ressource (XI, 238 S.) graph. Darst. |
psigel | ZDB-2-SMA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematical physics |
series2 | Progress in mathematical physics |
spelling | Čulaevskij, V. A. Verfasser aut Multi-scale analysis for random quantum systems with interaction Victor Chulaevsky ; Yuri Suhov New York Birkhäuser 2014 1 Online-Ressource (XI, 238 S.) graph. Darst. txt rdacontent c rdamedia cr rdacarrier Progress in mathematical physics 65 Single-particle Localisation -- A Brief History of Anderson Localization.- Single-Particle MSA Techniques -- Multi-particle Localization -- Multi-particle Eigenvalue Concentration Bounds -- Multi-particle MSA Techniques Includes bibliographical references and index The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd Multiscale modeling Functional Analysis Mathematical Methods in Physics Probability Theory and Stochastic Processes Applications of Mathematics Vielteilchensystem (DE-588)4063491-7 gnd rswk-swf Quantenmechanisches System (DE-588)4300046-0 gnd rswk-swf Mehrskalenanalyse (DE-588)4416235-2 gnd rswk-swf Quantenmechanisches System (DE-588)4300046-0 s Mehrskalenanalyse (DE-588)4416235-2 s Vielteilchensystem (DE-588)4063491-7 s DE-604 Suchov, Jurij M. Verfasser aut Progress in mathematical physics 65 (DE-604)BV035421269 65 https://doi.org/10.1007/978-1-4614-8226-0 Verlag Volltext |
spellingShingle | Čulaevskij, V. A. Suchov, Jurij M. Multi-scale analysis for random quantum systems with interaction Progress in mathematical physics Multiscale modeling Functional Analysis Mathematical Methods in Physics Probability Theory and Stochastic Processes Applications of Mathematics Vielteilchensystem (DE-588)4063491-7 gnd Quantenmechanisches System (DE-588)4300046-0 gnd Mehrskalenanalyse (DE-588)4416235-2 gnd |
subject_GND | (DE-588)4063491-7 (DE-588)4300046-0 (DE-588)4416235-2 |
title | Multi-scale analysis for random quantum systems with interaction |
title_auth | Multi-scale analysis for random quantum systems with interaction |
title_exact_search | Multi-scale analysis for random quantum systems with interaction |
title_full | Multi-scale analysis for random quantum systems with interaction Victor Chulaevsky ; Yuri Suhov |
title_fullStr | Multi-scale analysis for random quantum systems with interaction Victor Chulaevsky ; Yuri Suhov |
title_full_unstemmed | Multi-scale analysis for random quantum systems with interaction Victor Chulaevsky ; Yuri Suhov |
title_short | Multi-scale analysis for random quantum systems with interaction |
title_sort | multi scale analysis for random quantum systems with interaction |
topic | Multiscale modeling Functional Analysis Mathematical Methods in Physics Probability Theory and Stochastic Processes Applications of Mathematics Vielteilchensystem (DE-588)4063491-7 gnd Quantenmechanisches System (DE-588)4300046-0 gnd Mehrskalenanalyse (DE-588)4416235-2 gnd |
topic_facet | Multiscale modeling Functional Analysis Mathematical Methods in Physics Probability Theory and Stochastic Processes Applications of Mathematics Vielteilchensystem Quantenmechanisches System Mehrskalenanalyse |
url | https://doi.org/10.1007/978-1-4614-8226-0 |
volume_link | (DE-604)BV035421269 |
work_keys_str_mv | AT culaevskijva multiscaleanalysisforrandomquantumsystemswithinteraction AT suchovjurijm multiscaleanalysisforrandomquantumsystemswithinteraction |