Transformation groups and lie algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore [u.a.]
World Scientific
2013
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 181 - 182 |
Beschreibung: | X, 185 S. |
ISBN: | 9789814460842 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041455576 | ||
003 | DE-604 | ||
005 | 20140115 | ||
007 | t | ||
008 | 131202s2013 |||| 00||| eng d | ||
020 | |a 9789814460842 |9 978-981-4460-84-2 | ||
035 | |a (OCoLC)869854705 | ||
035 | |a (DE-599)GBV746656564 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Ibragimov, Nail H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Transformation groups and lie algebras |c Nail H. Ibragimov |
264 | 1 | |a Singapore [u.a.] |b World Scientific |c 2013 | |
300 | |a X, 185 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 181 - 182 | ||
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transformationsgruppe |0 (DE-588)4127386-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Transformationsgruppe |0 (DE-588)4127386-2 |D s |
689 | 0 | 1 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |m DE-601 |q pdf/application |u http://www.gbv.de/dms/tib-ub-hannover/746656564.pdf |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026902049&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-026902049 |
Datensatz im Suchindex
_version_ | 1804151582325997568 |
---|---|
adam_text | Titel: Transformation groups and Lie algebras
Autor: Ibragimov, Nailʹ C
Jahr: 2013
Contents
Preface............................................................ v
Part I Local Transformation Groups................................. 1
1 Preliminaries.................................................. 3
1.1 Changes of frames of reference and point transformations......... 3
1.1.1 Translations......................................... 3
1.1.2 Rotations........................................... 3
1.1.3 Galilean transformation............................... 4
1.2 Introduction of transformation groups ......................... 5
1.2.1 Definitions and examples.............................. 5
1.2.2 Different types of groups.............................. 10
1.3 Some useful groups......................................... 13
1.3.1 Finite continuous groups on the straight line.............. 13
1.3.2 Groups on the plane.................................. 14
1.3.3 Groups in IR ....................................... 19
Exercises to Chapter 1........................................... 21
2 One-parameter groups and their invariants....................... 23
2.1 Local groups of transformations.............................. 23
2.1.1 Notation and definition............................... 23
2.1.2 Groups written in a canonical parameter................. 25
2.1.3 Infinitesimal transformations and generators.............. 25
2.1.4 Lie equations........................................ 27
2.1.5 Exponential map..................................... 29
2.1.6 Determination of a canonical parameter................. 32
2.2 Invariants................................................. 34
2.2.1 Definition and infinitesimal test........................ 34
2.2.2 Canonical variables.................................. 36
2.2.3 Construction of groups using canonical variables.......... 38
vu
Contents
2.2.4 Frequenüy used groups in the plane..................... 40
2.3 Invariant equations......................................... 41
2.3.1 Definition and infinitesimal test........................ 41
2.3.2 Invariant representation of invariant manifolds............ 43
2.3.3 Proof of Theorem 2.9................................. 44
2.3.4 Examples on Theorem 2.9............................. 45
Exercises to Chapter 2........................................... 47
Groups admitted by differential equations........................ 51
3.1 Preliminaries.............................................. 51
3.1.1 Differential variables and functions..................... 51
3.1.2 Point transformations................................. 53
3.1.3 Frame of differential equations......................... 53
3.2 Prolongation of group transformations......................... 54
3.2.1 One-dimensional case................................ 54
3.2.2 Prolongation with several differential variables........... 55
3.2.3 General case........................................ 56
3.3 Prolongation of group generators ............................. 56
3.3.1 One-dimensional case................................ 56
3.3.2 Several differential variables........................... 59
3.3.3 General case........................................ 60
3.4 First definition of symmetry groups........................... 62
3.4.1 Definition .......................................... 62
3.4.2 Examples........................................... 62
3.5 Second definition of symmetry groups......................... 67
3.5.1 Definition and determining equations ................... 67
3.5.2 Determining equation for second-order ODEs............ 68
3.5.3 Examples on Solution of determining equations........... 68
Exercises to Chapter 3........................................... 73
Lie algebras of Operators........................................ 75
4.1 Basic definitions........................................... 75
4.1.1 Commutator........................................ 75
4.1.2 Properties ofthe commutator.......................... 77
4.1.3 Properties of determining equations..................... 79
4.1.4 Lie algebras......................................... 80
4.2 Basic properties............................................ 81
4.2.1 Notation............................................ 81
4.2.2 Subalgebra and ideal................................. 81
4.2.3 Derived algebras ..... ................................ 82
4.2.4 Solvable Lie algebras................................. 83
4.3 Isomorphism and similarity.................................. 84
4.3.1 Isomorphic Lie algebras.............................. 84
4.3.2 Similar Lie algebras.................................. 86
4.4 Low-dimensional Lie algebras................................ 88
Contents ix
4.4.1 One-dimensional algebras............................. 88
4.4.2 Two-dimensional algebras in the plane.................. 89
4.4.3 Three-dimensional algebras in the plane................. 97
4.4.4 Three-dimensional algebras in 1R3...................... 99
4.5 Lie algebras and multi-parameter groups.......................101
4.5.1 Definition of multi-parameter groups.................... 101
4.5.2 Construction of multi-parameter groups.................102
Exercises to Chapter 4...........................................104
5 Galois groups via symmetries....................................107
5.1 Preliminaries..............................................107
5.2 Symmetries of algebraic equations............................108
5.2.1 Determining equation.................................108
5.2.2 First example .......................................109
5.2.3 Second example.....................................111
5.2.4 Third example.......................................112
5.3 Construction of Galois groups................................113
5.3.1 Firstexample.......___............................ 113
5.3.2 Second example.....................................114
5.3.3 Third example.......................................115
5.3.4 Concluding remarks..................................116
Assignment to Part I........................... ....................117
Part II Approximate Transformation Groups.........................125
6 Preliminaries..................................................127
6.1 Motivation................................................127
6.2 A sketch on Lie transformation groups.........................129
6.2.1 One-parameter transformation groups...................129
6.2.2 Canonical parameter.................................130
6.2.3 Group generator and Lie equations......................131
6.2.4 Exponential map.....................................133
6.3 Approximate Cauchy problem................................134
6.3.1 Notation............................................134
6.3.2 Definition ofthe approximate Cauchy problem...........136
7 Approximate transformations...................................139
7.1 Approximate transformations defined..........................139
7.2 Approximate one-parameter groups...........................140
7.2.1 Introductory remark..................................140
7.2.2 Definition of one-parameter approximate
transformation groups................................140
7.2.3 Generator of approximate transformation group...........141
7.3 Infinitesimal description.....................................142
7.3.1 Approximate Lie equations............................142
x Contents
7.3.2 Approximate exponential map.........................146
Exercises to Chapter 7...........................................150
8 Approximate symmetries .......................................151
8.1 Definition of approximate symmetries.........................151
8.2 Calculation of approximate symmetries........................152
8.2.1 Determining equations................................152
8.2.2 Stable symmetries ...................................152
8.2.3 Algorithm for calculation .............................153
8.3 Examples.................................................154
8.3.1 First example .......................................154
8.3.2 Approximate commutator and Lie algebras...............155
8.3.3 Second example.....................................156
8.3.4 Third example.......................................157
Exercises to Chapter 8...........................................158
9 Applications...................................................161
9.1 Integration of equations with a small parameter using
approximate symmetries.....................................161
9.1.1 Equation having no exact point symmetries..............161
9.1.2 Utilization of stable symmetries........................162
9.2 Approximately invariant Solutions.............................166
9.2.1 Nonlinear wave equation..............................166
9.2.2 Approximate travelling waves of KdV equation...........170
9.3 Approximate conservation laws...............................172
Exercises to Chapter 9...........................................174
Assignment to Part II...............................................175
Bibliography.......................................................181
Index.............................................................183
|
any_adam_object | 1 |
author | Ibragimov, Nail H. |
author_facet | Ibragimov, Nail H. |
author_role | aut |
author_sort | Ibragimov, Nail H. |
author_variant | n h i nh nhi |
building | Verbundindex |
bvnumber | BV041455576 |
ctrlnum | (OCoLC)869854705 (DE-599)GBV746656564 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01433nam a2200361 c 4500</leader><controlfield tag="001">BV041455576</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140115 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">131202s2013 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814460842</subfield><subfield code="9">978-981-4460-84-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869854705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV746656564</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ibragimov, Nail H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transformation groups and lie algebras</subfield><subfield code="c">Nail H. Ibragimov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 185 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 181 - 182</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transformationsgruppe</subfield><subfield code="0">(DE-588)4127386-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Transformationsgruppe</subfield><subfield code="0">(DE-588)4127386-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">http://www.gbv.de/dms/tib-ub-hannover/746656564.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026902049&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026902049</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV041455576 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:57:06Z |
institution | BVB |
isbn | 9789814460842 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026902049 |
oclc_num | 869854705 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | X, 185 S. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific |
record_format | marc |
spelling | Ibragimov, Nail H. Verfasser aut Transformation groups and lie algebras Nail H. Ibragimov Singapore [u.a.] World Scientific 2013 X, 185 S. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 181 - 182 Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Transformationsgruppe (DE-588)4127386-2 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Transformationsgruppe (DE-588)4127386-2 s Lie-Algebra (DE-588)4130355-6 s DE-604 DE-601 pdf/application http://www.gbv.de/dms/tib-ub-hannover/746656564.pdf Inhaltsverzeichnis HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026902049&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ibragimov, Nail H. Transformation groups and lie algebras Lie-Algebra (DE-588)4130355-6 gnd Transformationsgruppe (DE-588)4127386-2 gnd |
subject_GND | (DE-588)4130355-6 (DE-588)4127386-2 (DE-588)4123623-3 |
title | Transformation groups and lie algebras |
title_auth | Transformation groups and lie algebras |
title_exact_search | Transformation groups and lie algebras |
title_full | Transformation groups and lie algebras Nail H. Ibragimov |
title_fullStr | Transformation groups and lie algebras Nail H. Ibragimov |
title_full_unstemmed | Transformation groups and lie algebras Nail H. Ibragimov |
title_short | Transformation groups and lie algebras |
title_sort | transformation groups and lie algebras |
topic | Lie-Algebra (DE-588)4130355-6 gnd Transformationsgruppe (DE-588)4127386-2 gnd |
topic_facet | Lie-Algebra Transformationsgruppe Lehrbuch |
url | http://www.gbv.de/dms/tib-ub-hannover/746656564.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026902049&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ibragimovnailh transformationgroupsandliealgebras |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis