Global optimization methods in geophysical inversion:
"Making inferences about systems in the Earth's subsurface from remotely-sensed, sparse measurements is a challenging task. Geophysical inversion aims to find models which explain geophysical observations - a model-based inversion method attempts to infer model parameters by iteratively fi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
2013
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | DE-91 Volltext |
Zusammenfassung: | "Making inferences about systems in the Earth's subsurface from remotely-sensed, sparse measurements is a challenging task. Geophysical inversion aims to find models which explain geophysical observations - a model-based inversion method attempts to infer model parameters by iteratively fitting observations with theoretical predictions from trial models. Global optimization often enables the solution of non-linear models, employing a global search approach to find the absolute minimum of an objective function, so that predicted data best fits the observations. This new edition provides an up-to-date overview of the most popular global optimization methods, including a detailed description of the theoretical development underlying each method, and a thorough explanation of the design, implementation, and limitations of algorithms. A new chapter provides details of recently-developed methods, such as the neighborhood algorithm, and particle swarm optimization. An expanded chapter on uncertainty estimation includes a succinct description on how to use optimization methods for model space exploration to characterize uncertainty, and now discusses other new methods such as hybrid Monte Carlo and multi-chain MCMC methods. Other chapters include new examples of applications, from uncertainty in climate modeling to whole earth studies. Several different examples of geophysical inversion, including joint inversion of disparate geophysical datasets, are provided to help readers design algorithms for their own applications. This is an authoritative and valuable text for researchers and graduate students in geophysics, inverse theory, and exploration geoscience, and an important resource for professionals working in engineering and petroleum exploration. ".. |
Beschreibung: | Includes bibliographical references (pages 268-278) and index |
Beschreibung: | 1 Online-Ressource (xii, 289 pages) |
ISBN: | 9780511997570 |
DOI: | 10.1017/CBO9780511997570 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV041395854 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 131104s2013 xxk|||| o||u| ||||||eng d | ||
010 | |a 012033212 | ||
020 | |a 9780511997570 |c online |9 978-0-511-99757-0 | ||
035 | |a (OCoLC)844613438 | ||
035 | |a (DE-599)BVBBV041395854 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-91 | ||
100 | 1 | |a Sen, Mrinal |d 1923-2018 |e Verfasser |0 (DE-588)119015250 |4 aut | |
245 | 1 | 0 | |a Global optimization methods in geophysical inversion |c Mrinal K. Sen ; Paul L. Stoffa |
250 | |a 2. ed. | ||
264 | 1 | |c 2013 | |
300 | |a 1 Online-Ressource (xii, 289 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 268-278) and index | ||
520 | |a "Making inferences about systems in the Earth's subsurface from remotely-sensed, sparse measurements is a challenging task. Geophysical inversion aims to find models which explain geophysical observations - a model-based inversion method attempts to infer model parameters by iteratively fitting observations with theoretical predictions from trial models. Global optimization often enables the solution of non-linear models, employing a global search approach to find the absolute minimum of an objective function, so that predicted data best fits the observations. This new edition provides an up-to-date overview of the most popular global optimization methods, including a detailed description of the theoretical development underlying each method, and a thorough explanation of the design, implementation, and limitations of algorithms. A new chapter provides details of recently-developed methods, such as the neighborhood algorithm, and particle swarm optimization. An expanded chapter on uncertainty estimation includes a succinct description on how to use optimization methods for model space exploration to characterize uncertainty, and now discusses other new methods such as hybrid Monte Carlo and multi-chain MCMC methods. Other chapters include new examples of applications, from uncertainty in climate modeling to whole earth studies. Several different examples of geophysical inversion, including joint inversion of disparate geophysical datasets, are provided to help readers design algorithms for their own applications. This is an authoritative and valuable text for researchers and graduate students in geophysics, inverse theory, and exploration geoscience, and an important resource for professionals working in engineering and petroleum exploration. ".. | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Geological modeling | |
650 | 4 | |a Geophysics |x Mathematical models | |
650 | 4 | |a Inverse problems (Differential equations) | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a SCIENCE / Geophysics | |
650 | 0 | 7 | |a Inverse Methode |0 (DE-588)4162226-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inversion |g Mathematik |0 (DE-588)4162235-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Daten |0 (DE-588)4135391-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inversionsalgorithmus |0 (DE-588)4162237-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inverses Problem |0 (DE-588)4125161-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inversion |g Geologie |0 (DE-588)4393651-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geophysik |0 (DE-588)4020252-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenauswertung |0 (DE-588)4131193-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geophysik |0 (DE-588)4020252-5 |D s |
689 | 0 | 1 | |a Daten |0 (DE-588)4135391-2 |D s |
689 | 0 | 2 | |a Inversion |g Mathematik |0 (DE-588)4162235-2 |D s |
689 | 0 | 3 | |a Datenauswertung |0 (DE-588)4131193-0 |D s |
689 | 0 | 4 | |a Inverse Methode |0 (DE-588)4162226-1 |D s |
689 | 0 | 5 | |a Inverses Problem |0 (DE-588)4125161-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 1 | 1 | |a Inversion |g Geologie |0 (DE-588)4393651-9 |D s |
689 | 1 | 2 | |a Inversionsalgorithmus |0 (DE-588)4162237-6 |D s |
689 | 1 | 3 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Stoffa, Paul L. |d 1948- |e Verfasser |0 (DE-588)1041635044 |4 aut | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511997570 |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-026843526 | |
966 | e | |u https://doi.org/10.1017/CBO9780511997570 |l DE-91 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1806775961589383168 |
---|---|
adam_text | |
any_adam_object | |
author | Sen, Mrinal 1923-2018 Stoffa, Paul L. 1948- |
author_GND | (DE-588)119015250 (DE-588)1041635044 |
author_facet | Sen, Mrinal 1923-2018 Stoffa, Paul L. 1948- |
author_role | aut aut |
author_sort | Sen, Mrinal 1923-2018 |
author_variant | m s ms p l s pl pls |
building | Verbundindex |
bvnumber | BV041395854 |
collection | ZDB-20-CBO |
ctrlnum | (OCoLC)844613438 (DE-599)BVBBV041395854 |
doi_str_mv | 10.1017/CBO9780511997570 |
edition | 2. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 c 4500</leader><controlfield tag="001">BV041395854</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">131104s2013 xxk|||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">012033212</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511997570</subfield><subfield code="c">online</subfield><subfield code="9">978-0-511-99757-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)844613438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041395854</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sen, Mrinal</subfield><subfield code="d">1923-2018</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119015250</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global optimization methods in geophysical inversion</subfield><subfield code="c">Mrinal K. Sen ; Paul L. Stoffa</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 289 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 268-278) and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Making inferences about systems in the Earth's subsurface from remotely-sensed, sparse measurements is a challenging task. Geophysical inversion aims to find models which explain geophysical observations - a model-based inversion method attempts to infer model parameters by iteratively fitting observations with theoretical predictions from trial models. Global optimization often enables the solution of non-linear models, employing a global search approach to find the absolute minimum of an objective function, so that predicted data best fits the observations. This new edition provides an up-to-date overview of the most popular global optimization methods, including a detailed description of the theoretical development underlying each method, and a thorough explanation of the design, implementation, and limitations of algorithms. A new chapter provides details of recently-developed methods, such as the neighborhood algorithm, and particle swarm optimization. An expanded chapter on uncertainty estimation includes a succinct description on how to use optimization methods for model space exploration to characterize uncertainty, and now discusses other new methods such as hybrid Monte Carlo and multi-chain MCMC methods. Other chapters include new examples of applications, from uncertainty in climate modeling to whole earth studies. Several different examples of geophysical inversion, including joint inversion of disparate geophysical datasets, are provided to help readers design algorithms for their own applications. This is an authoritative and valuable text for researchers and graduate students in geophysics, inverse theory, and exploration geoscience, and an important resource for professionals working in engineering and petroleum exploration. "..</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geological modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse problems (Differential equations)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SCIENCE / Geophysics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverse Methode</subfield><subfield code="0">(DE-588)4162226-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inversion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4162235-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Daten</subfield><subfield code="0">(DE-588)4135391-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inversionsalgorithmus</subfield><subfield code="0">(DE-588)4162237-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inversion</subfield><subfield code="g">Geologie</subfield><subfield code="0">(DE-588)4393651-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geophysik</subfield><subfield code="0">(DE-588)4020252-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenauswertung</subfield><subfield code="0">(DE-588)4131193-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geophysik</subfield><subfield code="0">(DE-588)4020252-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Daten</subfield><subfield code="0">(DE-588)4135391-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Inversion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4162235-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Datenauswertung</subfield><subfield code="0">(DE-588)4131193-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Inverse Methode</subfield><subfield code="0">(DE-588)4162226-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Inversion</subfield><subfield code="g">Geologie</subfield><subfield code="0">(DE-588)4393651-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Inversionsalgorithmus</subfield><subfield code="0">(DE-588)4162237-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stoffa, Paul L.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1041635044</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511997570</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026843526</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511997570</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV041395854 |
illustrated | Not Illustrated |
indexdate | 2024-08-08T00:10:29Z |
institution | BVB |
isbn | 9780511997570 |
language | English |
lccn | 012033212 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026843526 |
oclc_num | 844613438 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xii, 289 pages) |
psigel | ZDB-20-CBO |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
record_format | marc |
spelling | Sen, Mrinal 1923-2018 Verfasser (DE-588)119015250 aut Global optimization methods in geophysical inversion Mrinal K. Sen ; Paul L. Stoffa 2. ed. 2013 1 Online-Ressource (xii, 289 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 268-278) and index "Making inferences about systems in the Earth's subsurface from remotely-sensed, sparse measurements is a challenging task. Geophysical inversion aims to find models which explain geophysical observations - a model-based inversion method attempts to infer model parameters by iteratively fitting observations with theoretical predictions from trial models. Global optimization often enables the solution of non-linear models, employing a global search approach to find the absolute minimum of an objective function, so that predicted data best fits the observations. This new edition provides an up-to-date overview of the most popular global optimization methods, including a detailed description of the theoretical development underlying each method, and a thorough explanation of the design, implementation, and limitations of algorithms. A new chapter provides details of recently-developed methods, such as the neighborhood algorithm, and particle swarm optimization. An expanded chapter on uncertainty estimation includes a succinct description on how to use optimization methods for model space exploration to characterize uncertainty, and now discusses other new methods such as hybrid Monte Carlo and multi-chain MCMC methods. Other chapters include new examples of applications, from uncertainty in climate modeling to whole earth studies. Several different examples of geophysical inversion, including joint inversion of disparate geophysical datasets, are provided to help readers design algorithms for their own applications. This is an authoritative and valuable text for researchers and graduate students in geophysics, inverse theory, and exploration geoscience, and an important resource for professionals working in engineering and petroleum exploration. ".. Mathematisches Modell Geological modeling Geophysics Mathematical models Inverse problems (Differential equations) Mathematical optimization SCIENCE / Geophysics Inverse Methode (DE-588)4162226-1 gnd rswk-swf Inversion Mathematik (DE-588)4162235-2 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Daten (DE-588)4135391-2 gnd rswk-swf Inversionsalgorithmus (DE-588)4162237-6 gnd rswk-swf Inverses Problem (DE-588)4125161-1 gnd rswk-swf Inversion Geologie (DE-588)4393651-9 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Geophysik (DE-588)4020252-5 gnd rswk-swf Datenauswertung (DE-588)4131193-0 gnd rswk-swf Geophysik (DE-588)4020252-5 s Daten (DE-588)4135391-2 s Inversion Mathematik (DE-588)4162235-2 s Datenauswertung (DE-588)4131193-0 s Inverse Methode (DE-588)4162226-1 s Inverses Problem (DE-588)4125161-1 s 1\p DE-604 Datenanalyse (DE-588)4123037-1 s Inversion Geologie (DE-588)4393651-9 s Inversionsalgorithmus (DE-588)4162237-6 s Optimierung (DE-588)4043664-0 s 2\p DE-604 Stoffa, Paul L. 1948- Verfasser (DE-588)1041635044 aut https://doi.org/10.1017/CBO9780511997570 Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sen, Mrinal 1923-2018 Stoffa, Paul L. 1948- Global optimization methods in geophysical inversion Mathematisches Modell Geological modeling Geophysics Mathematical models Inverse problems (Differential equations) Mathematical optimization SCIENCE / Geophysics Inverse Methode (DE-588)4162226-1 gnd Inversion Mathematik (DE-588)4162235-2 gnd Datenanalyse (DE-588)4123037-1 gnd Daten (DE-588)4135391-2 gnd Inversionsalgorithmus (DE-588)4162237-6 gnd Inverses Problem (DE-588)4125161-1 gnd Inversion Geologie (DE-588)4393651-9 gnd Optimierung (DE-588)4043664-0 gnd Geophysik (DE-588)4020252-5 gnd Datenauswertung (DE-588)4131193-0 gnd |
subject_GND | (DE-588)4162226-1 (DE-588)4162235-2 (DE-588)4123037-1 (DE-588)4135391-2 (DE-588)4162237-6 (DE-588)4125161-1 (DE-588)4393651-9 (DE-588)4043664-0 (DE-588)4020252-5 (DE-588)4131193-0 |
title | Global optimization methods in geophysical inversion |
title_auth | Global optimization methods in geophysical inversion |
title_exact_search | Global optimization methods in geophysical inversion |
title_full | Global optimization methods in geophysical inversion Mrinal K. Sen ; Paul L. Stoffa |
title_fullStr | Global optimization methods in geophysical inversion Mrinal K. Sen ; Paul L. Stoffa |
title_full_unstemmed | Global optimization methods in geophysical inversion Mrinal K. Sen ; Paul L. Stoffa |
title_short | Global optimization methods in geophysical inversion |
title_sort | global optimization methods in geophysical inversion |
topic | Mathematisches Modell Geological modeling Geophysics Mathematical models Inverse problems (Differential equations) Mathematical optimization SCIENCE / Geophysics Inverse Methode (DE-588)4162226-1 gnd Inversion Mathematik (DE-588)4162235-2 gnd Datenanalyse (DE-588)4123037-1 gnd Daten (DE-588)4135391-2 gnd Inversionsalgorithmus (DE-588)4162237-6 gnd Inverses Problem (DE-588)4125161-1 gnd Inversion Geologie (DE-588)4393651-9 gnd Optimierung (DE-588)4043664-0 gnd Geophysik (DE-588)4020252-5 gnd Datenauswertung (DE-588)4131193-0 gnd |
topic_facet | Mathematisches Modell Geological modeling Geophysics Mathematical models Inverse problems (Differential equations) Mathematical optimization SCIENCE / Geophysics Inverse Methode Inversion Mathematik Datenanalyse Daten Inversionsalgorithmus Inverses Problem Inversion Geologie Optimierung Geophysik Datenauswertung |
url | https://doi.org/10.1017/CBO9780511997570 |
work_keys_str_mv | AT senmrinal globaloptimizationmethodsingeophysicalinversion AT stoffapaull globaloptimizationmethodsingeophysicalinversion |