Orthogonal polarization in lasers: physical phenomena and engineering applications
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore
Wiley [u.a.]
2013
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XXIII, 434 S. |
ISBN: | 9781118346495 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV041294547 | ||
003 | DE-604 | ||
005 | 20140417 | ||
007 | t | ||
008 | 130930s2013 si |||| 00||| eng d | ||
010 | |a 2013014717 | ||
020 | |a 9781118346495 |c cloth |9 978-1-118-34649-5 | ||
035 | |a (OCoLC)890064782 | ||
035 | |a (DE-599)BVBBV041294547 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a si |c SG | ||
049 | |a DE-703 |a DE-29T | ||
050 | 0 | |a QC688 | |
082 | 0 | |a 621.36/6 | |
084 | |a UH 5680 |0 (DE-625)145685: |2 rvk | ||
100 | 1 | |a Zhang, Shulian |e Verfasser |4 aut | |
245 | 1 | 0 | |a Orthogonal polarization in lasers |b physical phenomena and engineering applications |c Shulian Zhang ; Wolfgang Holzapfel |
250 | |a 1. publ. | ||
264 | 1 | |a Singapore |b Wiley [u.a.] |c 2013 | |
300 | |a XXIII, 434 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Lasers | |
650 | 4 | |a Polarization (Light) | |
650 | 0 | 7 | |a Laser |0 (DE-588)4034610-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polarisation |0 (DE-588)4046482-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Laser |0 (DE-588)4034610-9 |D s |
689 | 0 | 1 | |a Polarisation |0 (DE-588)4046482-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Holzapfel, Wolfgang |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743464&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743464&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-026743464 |
Datensatz im Suchindex
_version_ | 1804151360544833536 |
---|---|
adam_text | Contents
Foreword
xvi¡
by Zhou
Bingkun
Foreword
x¡x
by
Konrad
Herrmann
Preface
xxi
Introduction xxv
Part One FUNDAMENTALS OF LASERS AND BEAM POLARIZATIONS
1
Rigorous Introduction to Lasers and Beam Polarizations
3
1.
1 The Basic Amplifier/Cavity Configuration
3
1.2
Optical Waves of a Laser
4
1.3
Cavity Closed-Loop and Laser Threshold
8
1.3.1
The System Acts as a Closed-Loop Amplifier
1.3.2
The Closed-Loop System Acts as a Steady State Oscillator
13
1
.4
Survey of Techniques for Generating and Converting Laser Polarization States
16
1.4.1
Survey of Light Polarization States
17
1.4.2
Polarization Conversion by
Anisotropie
Components
18
1.4.3
Laser Polarization States at a Glance
20
1.4.4 Anisotropie
Elements Modulated by Electric/Magnetic Fields or
Tactile Forces
23
1.4.5
Outlook
24
References
24
2
Basic Physical Effects Inside Lasers
25
2.1
Interaction between Light and Particles
25
2.1.1
Spontaneous Emission
26
2Л.2
Stimulated Transitions
27
2Λ.3
Relationships among Einstein Coefficients
28
2.1.4
intensities by Spontaneous Emission and Induced Emission
28
2.1.5
Boltzmann Distribution Law
29
2.1.6
Population Inversion and Light Amplification
29
yjf¡
Contents
2.2
Line Shape Function and the Line Broadening Mechanism
30
2.2.1
Line Form Function and Luminescence Line Bandwidth
31
2.2.2
Probability of Spontaneous and induced Transitions
31
2.2.3
Mechanisms of Line Broadening
32
2.3
Gain Coefficient of Light in an Active Medium
38
2.3.1
Amplification Factor, Gain, and Gain Coefficient
38
2.3.2
Some Remarks on the Gain Coefficient
40
2.4
Saturation of Gain in the Laser Active Medium
40
2.4.1
Saturation in a Homogeneously Broadened Medium
41
2.4.2
Saturation in an Inhomogeneously Broadened Medium
43
2.4.3
Saturation in an
Integrative
Broadened Medium
43
2.5
Threshold Condition, Gain for Stationary Operation, and Lasing Bandwidth
44
2.5.1
Losses of a Laser and the Threshold Condition
44
2.5.2
Stationary Gain of a Laser in Continuous Operation
46
2.6
Optical Cavities and Laser Modes
46
2.6.7
Optical Cavity and Its Stability Condition
46
2.6.2
Longitudinal Modes of a Laser
47
2.6.3
Laser Frequency Shift
48
2.6.4
Laser Transverse Modes
49
2.6.5
Self-Consistent Condition of Laser Oscillation
50
2.7
Laser Mode Competition
50
2.7.1
Mode Competition in a Laser with a Homogeneously Broadened
Medium
51
2.7.2
Mode Competition in an Integratively Broadened Medium
52
2.8
Mode Push/Pull and Locking Effects
54
2.8.1
Frequency Pulling and Pushing Effects
54
2.8.2
Mode Locking
55
2.9
Power Tuning Properties of Lasers
55
2.9.1
Experimental Study of the Power Tuning Properties in Single-Mode
Lasers
55
2.9.2
Power Tuning Curve of a Laser with a Homogeneously Broadened
Medium
57
2.9.3
Tuning Properties of a Laser with an Integratively Broadened
Medium
57
References
59
3
Specific Laser Technologies Applicable for Orthogonally
Polarized Beam Generation
61
3.1
Background
61
3.2
Не
-Ne
lasers
62
3.2.1
Не
-Ne
Laser Configurations
62
3.2.2
Gas Discharge Excitation Mechanism
(0.6328
џт)
64
3.2.3
Light Generation Process
66
3.2.4
Factors Influencing Output Power of Laser Radiation
66
3.2.5
Polarization and Radiation Properties ofHe-Ne Lasers
67
Contents
33 Carbon Dioxide (CO2) Laser
and Its Polarization
State 68
3.4
Optically Pumped
Nd:
YAG Lasers
( 1.06
μπι)
69
3.4.1
Optical Properties of
Nd:
YAG Crystals and Excitation Mechanism
for Laser Radiation
69
3.4.2
Pumping of the Nd: YAG Laser by a Laser Diode
71
3.4.3
Polarization and Features of Diode Pumped Nd: YAG Lasers
72
3.5
Semiconductor Lasers
72
3.5.1
Structures of Semiconductor Lasers
73
3.5.2
Polarization States of Semiconductor Lasers
74
3.5.3
Features of Semiconductor Lasers
75
3.6
Fiber Lasers
76
3.6.1
Basic Structure and Typical Laser Parameters
76
3.6.2
Fiber Polarizations States
76
3.6.3
Advantages and Applications of Fiber Lasers
77
3.7
Conclusions on Relevant Orthogonally Polarized Laser Technologies
78
References
80
Part Two GENERATION OF ORTHOGONAL LASER POLARIZATIONS
4
Zeeman
Dual-Frequency Lasers and
M
ultifrequency Ring Lasers
-
Orthogonally Polarized Lasers in Tradition
83
4.1
Introduction
83
4.2
Zeeman
Dual-Frequency Lasers
84
4.2.1
Zeeman
Effect
84
4.2.2
Longitudinal and Transversal
Zeeman
Dual-Frequency Lasers
85
4.3
Multifrequency Ring Laser
88
4.3.1
Two-Frequency Ring Lasers
88
4.3.2
Four-Frequency Ring Lasers
91
4.3.3
Further Ring Laser Designs
96
References
96
5
Matrix Theory of
Anisotropie
Laser Cavities
-
A Further Approach to
Orthogonally Polarized Dual-Frequency Lasers
99
5.1
Background
99
5.2
Polarization-Dependent Properties of Optical Materials
100
5.3
Introduction to the Jones Formalism
10
Î
5.4
Mathematical Description of Polarized Light by the Jones Vectors
102
5.5
Transfer Matrixes of Retarders, Rotators, and Polarizers
103
5.6
Serial Connections of
Anisotropie
Elements and the Jones Theorem
105
5.7
Connection of Different Retardations within the Same
Anisotropie
Element
107
5.8
Calculation of Eigenpolarizations and Eigenfrequencies of Passive
Anisotropie
Cavities 107
5.9
Conclusions 111
References
Contents
6 Orthogonal
Polarization and Frequency Splitting
in
Biréfringent
Laser Cavities
113
6.1
Laser Frequency Splitting Due to Intracavity Birefringence
113
6.2
Laser Frequency Splitting Caused by Intracavity Quartz Crystals
117
6.2.1
Optical Activity and Birefringence of Quartz Crystals
118
6.2.2
Laser Frequency Splitting Due to the Quartz Crystal in the
Resonator
120
6.3
Laser Frequency Splitting Caused by Intracavity Electro-optic Crystals
125
6.3.1
Electro-optic Effect of Crystals and Induced Birefringence
125
6.3.2
Laser Frequency Split Caused by Internal Electro-optic Crystals
127
6.4
Induced Stress Birefringence and Laser Frequency Splitting
129
6.4.1
Induced Stress Birefringence in Photoelastic Materials
129
6.4.2
Laser Frequency Splitting Caused by Intracavity Stress Elements
131
6.5
Frequency Splitting in Semiconductor Lasers
133
6.5.1
Frequency Splitting in a Semiconductor Laser Caused by a
Two-Branched Half-External Cavity Structure
133
6.5.2
Frequency Splitting in a Semiconductor Laser by a Wave Plate in a
Single-Cavity Structure
134
6.5.3
Some Conclusions
136
6.6
Frequency Splitting in Fiber Lasers
136
6.7
Observation and Readout of Frequency Splitting
137
6.7.1
Observation of Laser Frequency Splitting by Scanning
Interferometers
138
6.7.2
Observation and Measurements of Laser Frequency Splitting by
Spectrum A nalyzers
141
6.7.3
Observing the Beat Signal in the Time Range by Oscilloscopes
142
6.7.4
Measurement of Beat Frequency by a Digital Frequency
Meter
142
6.8
Final Remark on Methods Used to Obtain Small and Also Larger
Frequency Differences
143
References
143
7
Design of Orthogonally Polarized Lasers
145
1Л
Background
145
7.2
Quartz Birefringence
Не
-Ne
Laser
147
7.3
Stress-Induced Birefringence He—
Ne
Laser
150
7.4
Equidistant Frequency Split
Ultrashort
He-Ne
Laser
153
7.5
Zeeman
Birefringence Dual-Frequency
Не
-Ne
Laser
154
7.6
Не
-Ne
Laser with Two Intracavity Birefringence Elements
158
7.7
Orthogonally Polarized Lasers with a Superposition Layer Birefringence Film
161
7.8
Laser Diode Pumped
Biréfringent
Nd:
YAG Laser with Tunable
Frequency Difference
163
7.8.1
Background
163
7.8.2
Modular and Monolithic Nd: YAG Lasers
164
Contents
7.9
Orthogonally Polarized Lasers with Electrically Controllable
Frequency Differences
169
References
1
7Q
Part Three NONLINEAR BEHAVIOR OF ORTHOGONALLY
POLARIZED LASERS
8
Competition and Flipping Phenomena in Orthogonally Polarized Lasers
175
8.
í
Intensity Tuning, Mode Competition, and Frequency Difference Tuning in
Dual-Frequency Lasers
176
8.1.1
Mode Competition and Intensity Tuning Properties of
Biréfringent
Lasers
176
8.1.2
Frequency Difference Tuning in
a Biréfringent
Dual-Frequency
Laser
183
8.2
Properties of Intensity Tuning and Frequency Difference Tuning in
Biréfringent
Zeeman
Lasers
184
8.2.1
Experimental Arrangement
185
8.2.2
Basic Shapes of the Tuning Curves of the Intensity and Frequency
Difference
186
8.2.3
Influence of Magnetic Field Magnitude on the Intensity Tuning
Curve
187
8.2.4
Influence of the Frequency Difference on the Properties
of Intensity Tuning Curves
190
8.2.5
Effect of the Angle between the Directions of the Magnetic Field
and the External Force
191
8.3
Polarization Properties Caused by Optical Activity of an Intracavity
Quartz Crystal
191
8.3.1
Extracavity Measurement of Optical Activity of Quartz Crystals
191
8.3.2
Polarization Rotation of a Laser Beam Due to Optical Activity of an
Intracavity Quartz Crystal
192
8.3.3
Self-Consistent Theory of Polarization Rotation Due to Optical
Activity
194
8.4
Effect of Optical Activity in the Frequency Difference
198
8.5
Polarization Flipping and Optical Hysteresis in
Biréfringent
Lasers
201
8.5.1
Rotation Mechanism
203
8.5.2
Inhibition Mechanism
206
8.5.3
Hybrid Hysteresis Loop
208
References 209
9
Optical Feedback Effects in Orthogonally Polarized Lasers
211
9.1
General Concept of Laser Feedback
2
1
2
9.1.1
Basic Experimental Arrangement
212
9.1.2
Past/Actual Studies of Optical Feedback Effects
214
9 13
Optical Feedback Modeling of Orthogonally Polarized Lasers
215
xii
Contents
9.2
Optical Feedback for
Biréfringent
He-Ne
Lasers
216
9.2.1
Experimental System
217
9.2.2
Feedback Fringes at Different Feedback Levels of
a Biréfringent
He-Ne
Laser
219
9.2.3
Phase Difference of the o-Beam and the
е
-Beam in Weak Optical
Feedback for
Biréfringent
He-Ne
Lasers
225
9.2.4
Optical Feedback
f
or Lasers with Two Longitudinal Modes
230
9.3
Optical Feedback of Birefringence
Zeeman
Lasers
235
9.3.1
Generic Cosine Feedback Fringes in Birefringence
Zeeman
Lasers
235
9.3.2
Competitive Feedback Fringes in Birefringence
Zeeman
Lasers
238
9.4
Optical Feedback with an Orthogonally Polarized External Cavity
241
9.4.1
Experimental Configuration
242
9.4.2
Optical Feedback with an Orthogonally Polarized External Cavity
242
9.5
Narrow Feedback Fringes of
Biréfringent
Dual-Frequency Lasers
248
9.5.1
General about the Round-Trip Selection External Cavity
248
9.5.2
Optical Feedback of a Two-Folded External Cavity
250
9.5.3
Nanometer Fringes and Polarization Flipping
253
9.6
Optical Feedback of a Microchip Nd: YAG Laser with Birefringence
256
9.6.1
Optical Feedback of an Orthogonal Polarized Microchip Nd: YAG
Laser
256
9.6.2
Optical Feedback of the Microchip Nd: YAG Laser with a
Biréfringent
External Cavity
263
9.7
Conclusions on the Feedback in Orthogonally Polarized Lasers
266
References
269
10
Semi-classical Theory of Orthogonally Polarized Lasers
273
10.1
Modeling of Orthogonally Polarized Lasers
273
10.1.1
Selection of the Theoretical Model
273
10.1.2
The Self-Consistency Equation
275
10.1.3
Medium Polarization Coefficients of Lasers
277
10.1.4
Modification of Medium Polarization Coefficients
283
10.1.5
Steady State Solution of Self-Consistency Equations
284
10.1.6
Analysis of
Biréfringent
Zeeman
Lasers
285
10.2
Theoretical Analysis of Orthogonally Polarized Lasers
288
10.2.1
Cavity Tuning Analysis ofHe-Ne Lasers Containing Single/Dual
Ne
Isotopes
288
10.2.2
Analysis of Mode Locking and Mode Suppression
293
10.2.3
Analysis of
Zeeman
Birefringence Lasers
295
10.2.4
Applicability Discussion of the
Vectorial
Extension Model of
Lamb s Semi-classical Theory
297
10.2.5
Conclusions
298
10.3
Analysis of Optical Feedback Phenomena in
Biréfringent
Lasers
299
10.3.1
Feedback Fringes in Moderate Optical Feedback
299
10.3.2
Theory Model for Different Feedback Levels in
Biréfringent
Lasers
303
10.3.3
Conclusion and Discussion
305
References
307
Contents
.¡j
- ____________________
л. ДЕД
Part Four APPLICATIONS OF ORTHOGONALLY POLARIZED LASERS
11
Introduction and Background of Applications
311
1
1
.1
Survey of the Application Potential
3
11
11.2
What Is the Particularity of OPDF Laser Measurements?
З і З
References 3J5
12
Measurements of Optical Anisotropies by Orthogonally Polarized Lasers
317
12.1
Phase Retardation Measurement of Wave Plates by Laser Frequency Splitting
318
12.1.1
Background
318
12.1.2
Measuring Phase Retardations by Frequency Split Lasers
321
12.1.3
Especial Issue in the Measurement of Phase Retardation ofHWP
and
FWP
325
12.1.4
Systematic Issues of Measuring Arbitrary Phase Retardation
327
12.1.5
Setup and Performance of the Instrumentation System
332
12.1.6
Conclusions
333
12.2
Phase Retardation Measurements of Optical Components Based on Laser
Feedback and Polarization Flipping
333
12.2.1
Background
333
12.2.2
Principle of Measuring Phase Retardation Based on Polarization
Flipping by Optical Feedback
334
12.2.3
Main Measurement Techniques for Phase Retardation
337
12.2.4
Performance and Error Analysis
338
12.2.5
Conclusions
339
12.3
Intracavity Transmission Ellipsometry for Optically
Anisotropie
Components
340
12.3.1
Basic Configuration and Procedure
340
12.3.2
Measuring Performance of Intracavity Transmission Ellipsometry
and Comments
342
References
343
13
Displacement Measurement by Orthogonally Polarized Lasers
345
13.1
Background and Basic Considerations
345
13.2
Zeeman
OPDF Laser Interferometer
347
13.3
Displacement Measurement Based on Cavity Tuning of Orthogonal Polarized
Lasers
-
OPMC Displacement Transducers
350
13.3.1
Principle of OPMC Displacement Transducers
351
13.3.2
OPMC Transducer with Converse Mirrors
355
13.3.3
Half-Wavelength Subdivision Technology
359
13.3.4
Performance of the OPMC Displacement Transducer
360
13.3.5
Discussion and Conclusion
362
13.4
Displacement Measurement Based on Feedback of Orthogonally
Polarized Lasers
364
13.4.1
Background
364
13.4.2
Measuring Principle for a Moderate Feedback B-Laser
365
13.4.3
Experimental System and Performance
367
13.4.4
Discussion and Conclusion
368
xiv
Contents
13.5
Displacement Measurement Based on Feedback of the BZ-Laser
369
13.5.1
Configuration of Displacement Measurement of the Feedback
BZ-Laser
370
13.5.2
Measurement Principle Based on the Feedback BZ-laser
370
13.5.3
Performance of Displacement Measurement
372
13.5.4
Conclusion
372
13.6
Displacement Measurement Based on Orthogonal Polarized Feedback
of Nd: YAG Lasers
373
13.6.1
Configuration for Displacement Measurement
373
13.6.2
Principle of Displacement Measurement
Ъ1
13.6.3
Performance of Displacement Measurement
375
13.6.4
Conclusion
375
13.7
Microchip Nd: YAG Laser Interferometers with Quasi-Common-Path
Feedback
376
13.7.1
Background
376
13.7.2
Configuration of a Quasi-Common-Path Nd.YAG LFI
377
13.7.3
Performance of Quasi-Common-Path Feedback of the Nd: YAG
Laser
380
13.7.4
Discussion and Conclusion
381
References
382
14
Force and Pressure Measurement by Means of Photoelastic
Nd:YAG Lasers
385
14.1
Principle and Experimental Setup of Force and Pressure Measurement
386
14.1.1
Force to Optical Frequency Conversion
387
14.1.2
Electronic Signal Processing
389
14.1.3
Dynamic Frequency Response of the Laser Transducer
391
14.2
Force Measurement: Experimental Results
392
14.3
Pressure Measurement: Experimental Results
398
14.3.1
Laser Microchip Pressure Transducer
398
14.3.2
Fully Optical Pressure Measurement
399
14.4
Advanced Studies in Force to Frequency Conversion
400
14.4.1
Force Vector Measurement Capability of OPDF Lasers
400
14.4.2
Optimized Design Geometry of Transducer Crystals
402
14.5
Prospects of Laser-Based Force Measurements
403
References
404
15
Measurements via Translation/Rotation of Intracavity Quartz Crystals
407
15.1
Displacement Measurement by Means of an Intracavity Quartz Crystal
Wedge
407
15.2
Measurement of Earth s Gravity by Means of an Intracavity Quartz
Crystal Wedge
409
15.3
Vibration Measurement by Means of an Intracavity Quartz Crystal Wedge
410
15.4
Measuring Rotation Angles by Means of an Intracavity Quartz Crystal Plate
412
References
414
Contents xv
16
Combined Magnetometer/Rate Gyro Transducers by Four-Frequency
Ring Lasers
415
16.1
Principle of the Frequency Splitting Ring Laser Weak Magnetic
Field Transducer
415
16.2
Experimental Arrangement
418
16.3
Experimental Results and Discussions
419
16.4
Conclusions
420
References
420
17
Further Applications of Orthogonally Polarized Lasers
421
17.1
Tunable Signal Generation
421
17.1.1
Tunable Optical Master Oscillators
421
17.1.2
Frequency Doubled Lasers
421
17.1.3
Electronic Signal Sources
422
17.2
Polarized Lasers in Material Processing
422
References
423
18
Conclusions of Part Four
425
18.1
Phase Retardation Measurement Applications
425
18.2
Displacement Sensing Applications
426
18.3
Force, Pressure, and Acceleration Measurement Applications
426
Index
429
ORTHOGONAL
POLARIZATION
¡η
LASERS
Physical Phenomena and Engineering Applications
Shulian Zhang, Tsinghua University, P.R, China
Wolfgang
Holzapfel,
Tsinghua University, P.R. China
Lasers generally emit radiation, which is either simply linearly polarized or unpolarized
and stochastically polarized. Contrary to these common lasers, all orthogonally
polarized lasers simultaneously emit radiation in two linear polarization states,
both exactly orthogonally oriented to each other. Due to this orthogonality, both
polarized components in the beam are independent of each other to a high degree
and the studies presented in this book make clear that this feature can give a strong
advantage in certain laser applications, for instance in high-precision measurements.
Orthogonal Polarization in Lasers: Physical Phenomena and Engineering Applications
summarizes the basics and advanced research results of orthogonally polarized lasers,
birefringence laser cavities, and their applications. The authors include a number
of figures, experimental designs, and measurement curves to enable the reader to
not only learn the basic principles and technologies but also to understand many
applications in modern engineering and to start their own R&D projects.
л
•
The book covers polarization effects, which are of fundamental importance
across various disciplines of science and technology.
■
Includes a number of figures, experimental designs, and measurement curves to
help readers learn the basic principles and start their own R&D projects.
•
Discusses many types of relevant lasers (helium/neon lasers, ND:YAG lasers,
semiconductor lasers, laser diodes).
•
Written by multiply-published authors in the subject area.
•
Contains material useful for metrology applications.
This book is intended for use by researchers, postgraduates, and engineers working
in laser science, optics, and measurement and testing, while senior undergraduate
students working in optical and laser science can use the book for advanced
understanding in their field.
Wiley
ISBN
978-1-118-34649-5
TSINGHUA
UNIVERSITY PRESS
9 7 8 1118
|
any_adam_object | 1 |
author | Zhang, Shulian Holzapfel, Wolfgang |
author_facet | Zhang, Shulian Holzapfel, Wolfgang |
author_role | aut aut |
author_sort | Zhang, Shulian |
author_variant | s z sz w h wh |
building | Verbundindex |
bvnumber | BV041294547 |
callnumber-first | Q - Science |
callnumber-label | QC688 |
callnumber-raw | QC688 |
callnumber-search | QC688 |
callnumber-sort | QC 3688 |
callnumber-subject | QC - Physics |
classification_rvk | UH 5680 |
ctrlnum | (OCoLC)890064782 (DE-599)BVBBV041294547 |
dewey-full | 621.36/6 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.36/6 |
dewey-search | 621.36/6 |
dewey-sort | 3621.36 16 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01916nam a2200457zc 4500</leader><controlfield tag="001">BV041294547</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140417 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130930s2013 si |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2013014717</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118346495</subfield><subfield code="c">cloth</subfield><subfield code="9">978-1-118-34649-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890064782</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041294547</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">si</subfield><subfield code="c">SG</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC688</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36/6</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5680</subfield><subfield code="0">(DE-625)145685:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Shulian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthogonal polarization in lasers</subfield><subfield code="b">physical phenomena and engineering applications</subfield><subfield code="c">Shulian Zhang ; Wolfgang Holzapfel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Wiley [u.a.]</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 434 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lasers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polarization (Light)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laser</subfield><subfield code="0">(DE-588)4034610-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polarisation</subfield><subfield code="0">(DE-588)4046482-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Laser</subfield><subfield code="0">(DE-588)4034610-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Polarisation</subfield><subfield code="0">(DE-588)4046482-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holzapfel, Wolfgang</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743464&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743464&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026743464</subfield></datafield></record></collection> |
id | DE-604.BV041294547 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:53:35Z |
institution | BVB |
isbn | 9781118346495 |
language | English |
lccn | 2013014717 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026743464 |
oclc_num | 890064782 |
open_access_boolean | |
owner | DE-703 DE-29T |
owner_facet | DE-703 DE-29T |
physical | XXIII, 434 S. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Wiley [u.a.] |
record_format | marc |
spelling | Zhang, Shulian Verfasser aut Orthogonal polarization in lasers physical phenomena and engineering applications Shulian Zhang ; Wolfgang Holzapfel 1. publ. Singapore Wiley [u.a.] 2013 XXIII, 434 S. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Lasers Polarization (Light) Laser (DE-588)4034610-9 gnd rswk-swf Polarisation (DE-588)4046482-9 gnd rswk-swf Laser (DE-588)4034610-9 s Polarisation (DE-588)4046482-9 s DE-604 Holzapfel, Wolfgang Verfasser aut Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743464&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743464&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Zhang, Shulian Holzapfel, Wolfgang Orthogonal polarization in lasers physical phenomena and engineering applications Lasers Polarization (Light) Laser (DE-588)4034610-9 gnd Polarisation (DE-588)4046482-9 gnd |
subject_GND | (DE-588)4034610-9 (DE-588)4046482-9 |
title | Orthogonal polarization in lasers physical phenomena and engineering applications |
title_auth | Orthogonal polarization in lasers physical phenomena and engineering applications |
title_exact_search | Orthogonal polarization in lasers physical phenomena and engineering applications |
title_full | Orthogonal polarization in lasers physical phenomena and engineering applications Shulian Zhang ; Wolfgang Holzapfel |
title_fullStr | Orthogonal polarization in lasers physical phenomena and engineering applications Shulian Zhang ; Wolfgang Holzapfel |
title_full_unstemmed | Orthogonal polarization in lasers physical phenomena and engineering applications Shulian Zhang ; Wolfgang Holzapfel |
title_short | Orthogonal polarization in lasers |
title_sort | orthogonal polarization in lasers physical phenomena and engineering applications |
title_sub | physical phenomena and engineering applications |
topic | Lasers Polarization (Light) Laser (DE-588)4034610-9 gnd Polarisation (DE-588)4046482-9 gnd |
topic_facet | Lasers Polarization (Light) Laser Polarisation |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743464&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743464&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zhangshulian orthogonalpolarizationinlasersphysicalphenomenaandengineeringapplications AT holzapfelwolfgang orthogonalpolarizationinlasersphysicalphenomenaandengineeringapplications |