Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Chichester
Wiley
2013
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Wiley series in renewable resources
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Includes index. |
Beschreibung: | XXVI, 538 S. Ill., graph. Darst |
ISBN: | 9780470972021 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV041293240 | ||
003 | DE-604 | ||
005 | 20140729 | ||
007 | t | ||
008 | 130927s2013 xxkad|| |||| 00||| eng d | ||
010 | |a 2012051128 | ||
020 | |a 9780470972021 |c hardback |9 978-0-470-97202-1 | ||
035 | |a (OCoLC)849469064 | ||
035 | |a (DE-599)BVBBV041293240 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-703 |a DE-29T | ||
050 | 0 | |a TP248.27.P55 | |
082 | 0 | |a 333.95/39 | |
084 | |a VN 9250 |0 (DE-625)147638:253 |2 rvk | ||
084 | |a ZP 3760 |0 (DE-625)157974: |2 rvk | ||
245 | 1 | 0 | |a Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals |c editor Charles E. Wyman |
250 | |a 1. publ. | ||
264 | 1 | |a Chichester |b Wiley |c 2013 | |
300 | |a XXVI, 538 S. |b Ill., graph. Darst | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Wiley series in renewable resources | |
500 | |a Includes index. | ||
650 | 4 | |a Plant biomass | |
650 | 4 | |a Biomass energy | |
650 | 4 | |a Biomass chemicals | |
650 | 4 | |a Biotechnology | |
650 | 0 | 7 | |a Industriechemikalie |0 (DE-588)4226178-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Technische Chemie |0 (DE-588)4078178-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vorbehandlung |g Technik |0 (DE-588)4188637-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biomasseverarbeitung |0 (DE-588)4400055-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Katalyse |0 (DE-588)4029921-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Alternativkraftstoff |0 (DE-588)4125883-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kraftstoffherstellung |0 (DE-588)4165454-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grüne Chemie |0 (DE-588)7563215-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biomasse |0 (DE-588)4006877-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biokraftstoff |0 (DE-588)4145658-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nachhaltigkeit |0 (DE-588)4326464-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grundstoff |0 (DE-588)4158411-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biotechnologie |0 (DE-588)4069491-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Biomasse |0 (DE-588)4006877-8 |D s |
689 | 0 | 1 | |a Technische Chemie |0 (DE-588)4078178-1 |D s |
689 | 0 | 2 | |a Vorbehandlung |g Technik |0 (DE-588)4188637-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Biomasse |0 (DE-588)4006877-8 |D s |
689 | 1 | 1 | |a Biomasseverarbeitung |0 (DE-588)4400055-8 |D s |
689 | 1 | 2 | |a Biotechnologie |0 (DE-588)4069491-4 |D s |
689 | 1 | 3 | |a Kraftstoffherstellung |0 (DE-588)4165454-7 |D s |
689 | 1 | 4 | |a Alternativkraftstoff |0 (DE-588)4125883-6 |D s |
689 | 1 | 5 | |a Nachhaltigkeit |0 (DE-588)4326464-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Biokraftstoff |0 (DE-588)4145658-0 |D s |
689 | 2 | 1 | |a Grüne Chemie |0 (DE-588)7563215-9 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Biomasse |0 (DE-588)4006877-8 |D s |
689 | 3 | 1 | |a Katalyse |0 (DE-588)4029921-1 |D s |
689 | 3 | 2 | |a Industriechemikalie |0 (DE-588)4226178-8 |D s |
689 | 3 | 3 | |a Grundstoff |0 (DE-588)4158411-9 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Biotechnologie |0 (DE-588)4069491-4 |D s |
689 | 4 | 1 | |a Biomasseverarbeitung |0 (DE-588)4400055-8 |D s |
689 | 4 | 2 | |a Katalyse |0 (DE-588)4029921-1 |D s |
689 | 4 | |5 DE-604 | |
700 | 1 | |a Wyman, Charles E. |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026742176&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026742176&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-026742176 |
Datensatz im Suchindex
_version_ | 1804151358399447040 |
---|---|
adam_text | Contents;
List of Contributors xvii
Foreword
Series Preface
Preface
Acknowledgements
ххуу
1
Introduction
[
Charles E. Wyman
1.1
Cellulosic Biomass: What and Why?
2
1.2
Aqueous Processing of Cellulosic Biomass into Organic Fuels and Chemicals
3
1.3
Attributes for Successful Pretreatment
5
14
Pretreatment Options
η
1.5
Possible Blind Spots in the Historic Pretreatment Paradigm
8
1.6
Other Distinguishing Features of Pretreatment Technologies
9
1.7
Book Approach
9
1
.8
Overview of Book Chapters
1
о
Acknowledgements
до
References
1
1
2
Cellulosic Biofiiels: Importance, Recalcitrance, and Pretreatment
17
Lee Lynd and Mark Laser
2.1
Our Place in History
17
2.2
The Need for Energy from Biomass
1
η
2.3
The Importance of Cellulosic Biomass
18
2.4
Potential Barriers
18
2.5
Biological and Thermochemical Approaches to the Recalcitrance Barrier
19
2.6
Pretreatment
20
Acknowledgements
21
References
21
vi
Contents
3
Plant Cell Walls: Basics of Structure, Chemistry, Accessibility and the Influence
on Conversion
23
Brian H. Damson, Jerry Parks, Mark F. Davis andBryon S. Donohoe
3.1
Introduction
23
3.2
Biomass Diversity Leads to Variability in Cell-wall Structure and Composition
24
3.3
Processing Options for Accessing the Energy in the Lignocellulosic Matrix
26
3.4
Plant Tissue and Cell Types Respond Differently to Biomass Conversion
28
3.5
The Basics of Plant Cell-wall Structure
29
3.6
Cell-wall Surfaces and Multilamellar Architecture
30
3.7
Cell-wall
Ultrastructure
and Nanoporosity
31
3.8
Computer Simulation in Understanding Biomass Recalcitrance
32
3.8.1
What Can We Learn from Molecular Simulation?
32
3.8.2
Simulations of
Lignin
33
3.8.3
Simulations of Cellulose
34
3.8.4
Simulation of Lignocellulosic Biomass
35
3.8.5
Outlook for Biomass Simulations
35
3.9
Summary
35
Acknowledgements
36
References
36
4
Biological Conversion of Plants to Fuels and Chemicals and the Effects of Inhibitors
39
Eduardo
Ximenes, Youngmi Kim and Michael R. Ladisch
4.1
Introduction
39
4.2
Overview of Biological Conversion
40
4.3
Enzyme and
Ethanol
Fermentation Inhibitors Released during
Pretreatment
and/or
Enzyme Hydrolysis
42
4.3.1
Enzyme Inhibitors Derived from Plant Cell-wall Constituents
(Lignin,
Soluble Phenolics, and Hemicellulose)
43
4.3.2
Effect of Furfurals and Acetic Acid as Inhibitors of
Ethanol
Fermentations
48
4.4
Hydrolysis of Pentose Sugar
Oligomers
Using Solid-acid Catalysts
50
4.4.1
Application of Solid-acid Catalysts for Hydrolysis of Sugar
Oligomers
Derived from Lignocelluloses
50
4.4.2
Factors Affecting Efficiency of Solid-acid-catalyzed Hydrolysis
51
4.5
Conclusions
56
Acknowledgements
57
References
57
5
Catalytic Strategies for Converting Lignocellulosic Carbohydrates
to Fuels and Chemicals
61
Jesse Q. Bond, David Martin
Alonso
and James A. Dumesic
5.1
Introduction
61
5.2
Biomass Conversion Strategies
62
5.3
Criteria for Fuels and Chemicals
64
5.3.1
General Considerations in the Production of Fuels and Fuel Additives
64
5.3.2
Consideration for Specialty Chemicals
66
Contents
vii
5.4
Primary Feedstocks and Platforms
66
5.4.1
Cellulose 66
5.4.2
Hemicellulose
67
5.5
Sugar Conversion and Key Intermediates
68
5.5.1
Sugar Oxidation
69
5.5.2
Sugar Reduction (Polyol Production)
70
5.5.3
Sugar Dehydration
(Furan
Production)
77
5.6
Conclusions
91
Acknowledgements
92
References
92
6
Fundamentals of Biomass Pretreatment at Low
pH
103
Heather
L
Trajano and Charles E. Wyman
6.1
Introduction
103
6.2
Effects of Low
pH
on Biomass Solids
104
6.2.1
Cellulose
104
6.2.2
Hemicellulose
105
6.2.3
Lignin
106
6.2.4
Ash
107
6.2.5
Ultrastructure
107
6.2.6
Summary of Effects of Low
pH
on Biomass Solids
108
6.3
Pretreatment in Support of Biological Conversion
108
6.3.1
Hydrolysis of Cellulose to Fermentable Glucose
108
6.3.2
Pretreatment for Improved Enzymatic Digestibility
109
6.3.3
Pretreatment for Improved Enzymatic Digestibility and Hemicellulose
Sugar Recovery
110
6.4
Low-pH Hydrolysis of Cellulose and Hemicellulose
114
6.4.1
Furfural
114
6.4.2
Levulinic Acid
115
6.4.3
Drop-in Hydrocarbons
115
6.5
Models of Low-pH Biomass Reactions
116
6.5.1
Cellulose Hydrolysis
117
6.5.2
Hemicellulose Hydrolysis
118
6.5.3
Summary of Kinetic Models
120
6.6
Conclusions
122
Acknowledgements
123
References
123
7
Fundamentals of Aqueous Pretreatment of Biomass
129
Nathan S.
Mosier
7.1
Introduction
129
7.2
Self-ionization of Water Catalyzes Plant Cell-wall Depolymerization
130
7.3
Products from the Hydrolysis of the Plant Cell Wall Contribute to Further
Depolymerization
131
7.4
Mechanisms of Aqueous Pretreatment
131
viii Contents
7.4.1
Hemícellulose
131
7.4.2
Lignin
134
7.4.3
Cellulose
136
7.5
Impact
of Aqueous
Pretreatment
on Cellulose
Digestibility
137
7.6
Practical Applications of Liquid Hot Water
Pretreatment
138
7.7
Conclusions
140
References
140
8
Fundamentals of Biomass
Pretreatment
at High
pH
145
Rocío
Sierra Ramirez, Mark Holtzapple and Natalia Piamonte
8.1
Introduction
145
8.2
Chemical Effects of Alkaline Pretreatments on Biomass Composition
146
8.2.1
Non-oxidative Delignification
147
8.2.2
Non-oxidative Sugar Degradation
148
8.2.3
Oxidative Delignification
150
8.2.4
Oxidative Sugar Degradation
151
8.3
Ammonia Pretreatments
153
8.4
Sodium Hydroxide Pretreatments
155
8.5
Alkaline Wet Oxidation
155
8.6
Lime Pretreatment
158
8.7
Pretreatment
Severity
161
8.8
Pretreatment
Selectivity
161
8.9
Concluding Remarks
163
References
163
9
Primer on Ammonia Fiber Expansion
Pretreatment
169
S.
P.S.
Chundawat,
В.
Bals, T. Campbell,
L
Sousa, D.
Gao,
M.
Jin,
P. Eranki,
R.
Garlock, F. Teymouri,
V. Balan and
B.E.
Dale
9.1
Historical Perspective of Ammonia-based Pretreatments
169
9.2
Overview of AFEX and its Physicochemical Impacts
170
9.3
Enzymatic and Microbial Activity on AFEX-treated Biomass
175
9.3.1
Impact of AFEX
Pretreatment
on Cellulase Binding to Biomass
175
9.3.2
Enzymatic Digestibility of AFEX-treated Biomass
176
9.3.3
Microbial Fermentability of AFEX-treated Biomass
178
9.4
Transgenic Plants and AFEX
Pretreatment
183
9.5
Recent Research Developments on AFEX Strategies and
Reactor Configurations
185
9.5.1
Non-extractive AFEX Systems
185
9.5.2
Extractive AFEX Systems
186
9.5.3
Fluidized
Gaseous AFEX Systems
186
9.6
Perspectives on AFEX Commercialization
186
9.6.1
AFEX
Pretreatment
Commercialization in Cellulosic Biorefineries
186
9.6.2
Novel Value-added Products from AFEX-related Processes
190
9.6.3
AFEX-centric Regional Biomass Processing Depot
192
9.7
Environmental and Life-cycle Analyses for AFEX-centric Processes
193
Contents ix
9.8
Conclusions J94
Acknowledgements
295
References
195
10
Fundamentals of Biomass
Pretreatment
by Fractionation
201
Poulomi Sannigrahi and Arthur J. Ragauskas
10.1
Introduction
201
10.2
Organosol v
Pretreatment
202
10.2.1
Organosolv Pulping
202
10.2.2
Overview of Organosolv
Pretreatment
202
10.2.3
Solvents and Catalysts for Organosolv
Pretreatment
203
10.2.4
Fractionation of Biomass during Organosolv
Pretreatment
209
10.3
Nature of Organosolv
Lignin
and Chemistry of Organosolv Delignification
210
10.3.1
Composition and Structure of Organosolv
Lignin
210
10.3.2
Mechanisms of Organosolv Delignification
213
10.3.3
Commercial Applications of Organosolv
Lignin
214
10.4
Structural and Compositional Characteristics of Cellulose
214
10.5
Co-products of Biomass Fractionation by Organosolv
Pretreatment
216
10.5.1
Hemicellulose
216
10.5.2
Furfural
217
10.5.3
Hydroxymethylfurfural (HMF)
218
Ш.5.4
Levulinic Acid
218
10.5.5
Acetic Acid
219
10.6
Conclusions and Recommendations
219
Acknowledgements
219
References
219
11
Ionic Liquid
Pretreatment:
Mechanism, Performance, and Challenges
223
Seema Singh and Blake A. Simmons
11.1
Introduction
223
11.2
Ionic Liquid
Pretreatment:
Mechanism
225
11.2.1
IL
Polarity and Kamlet-Taft Parameters
226
11.2.2
Interactions between ILs and Cellulose
226
11.2.3
Interactions between ILs and
Lignin
227
і 1
.3
Ionic Liquid Biomass
Pretreatment:
Enzymatic Route
228
11.3.1
Grasses
228
11.3.2
Agricultural Residues
230
11.3.3
Woody Biomass
230
11.4
Ionic Liquid
Pretreatment:
Catalytic Route
231
11.4.1
Acid-catalyzed Hydrolysis
232
11.4.2
Metal-catalyzed Hydrolysis
232
11.5
Factors Impacting Scalability and Cost of Ionic Liquid
Pretreatment
233
11.6
Concluding Remarks
234
Acknowledgements
234
References
234
χ
Contents
12
Comparative Performance
of Leading
Pretreatment Technologies
for Biological
Conversion of Corn Stover, Poplar Wood, and
Switchgrass
to Sugars
239
Charles E. Wyman, Bruce E. Dale, Venkatesh
Balan,
Richard
T. Eländer,
Mark T. Holtzapple,
Rocío
Sierra Ramirez, Michael R. Ladisch, Nathan
Mosier,
Y. Y. Lee, Rajesh
Gupta,
Steven
R.
Thomas, Bonnie R. Homes, Ryan Warner andRajeev Kumar
12.1
Introduction
240
12.2
Materials and Methods
242
12.2.1
Feedstocks
242
12.2.2
Enzymes
243
12.2.3
CAFI Pretreatments
243
12.2.4
Material Balances
244
12.2.5
Free Sugars and Extraction
244
12.3
Yields of Xylose and Glucose from
Pretreatment
and Enzymatic Hydrolysis
245
12.3.1
Yields from Corn Stover
245
12.3.2
Yields from Standard Poplar
247
12.3.3
Yields from Dacotah
Switchgrass 248
12.4
Impact of Changes in Biomass Sources
249
12.5
Compositions of Solids Following CAFI Pretreatments
251
12.5.1
Composition of Pretreated Corn Stover Solids
252
12.5.2
Composition of Pretreated
Switchgrass
Solids
252
12.5.3
Composition of Pretreated Poplar Solids
253
12.5.4
Overall Trends in Composition of Pretreated Biomass Solids and
Impact on Enzymatic Hydrolysis
253
12.6
Pretreatment
Conditions to Maximize Total Glucose Plus Xylose Yields
254
12.7
Implications of the CAFI Results
255
12.8
Closing Thoughts
256
Acknowledgements
257
References
258
13
Effects of Enzyme Formulation and Loadings on Conversion of Biomass
Pretreated by Leading Technologies
261
Rajesh Gupta and
Y. Y. Lee
13.1
Introduction
261
13.2
Synergism among Cellulolytic Enzymes
262
13.3
Hemicellulose Structure and Hemicelluloiytic Enzymes
263
13.4
Substrate Characteristics and Enzymatic Hydrolysis
264
13.5
Xylanase Supplementation for Different Pretreated Biomass and Effect
of
ß-Xylosidase 265
13.6
Effect of
ß-Glucosidase
Supplementation
269
13.7
Effect of Pectinase Addition
269
13.8
Effect of Feruloyl
Esterase
and
Acetyl
Xylan
Esterase
Addition
270
13.9
Effect of a-L-arabinofuranosidase and
Mannanase
Addition
270
13.10
Use of Lignin-degrading Enzymes (LDE)
271
13.11
Effect of Inactive Components on Biomass Hydrolysis
271
13.12
Adsorption and Accessibility of Enzyme with Different Cellulosic Substrates
271
Contents xi
13.13 Tuning Enzyme
Formulations
to the Feedstock
272
13.14
Summary
973
References
274
14
Physical and Chemical Features of Pretreated Biomass that Influence
MacroVMicro-accessibility and Biological Processing
281
Rajeev Kumar and Charles E. Wyman
14.1
Introduction
281
14.2
Definitions of Macro-Micro-accessibility and Effectiveness
283
14.3
Features Influencing Macro-accessibility and their Impacts on Enzyme
Effectiveness
284
14.3.1
Lignin
284
14.3.2
Hemicellulose
286
14.4
Features Influencing Micro-accessibility and their Impact on Enzymes
Effectiveness
289
14.4.1
Cellulose Crystallinity (Structure)
289
14.4.2
Cellulose Chain Length/Reducing Ends
291
14.5
Concluding Remarks
293
Acknowledgements
296
References
296
15
Economics of
Pretreatment
for Biological Processing
311
Ling Tao, Andy Aden and Richard
T. Eländer
15.1
Introduction
311
15.2
Importance of
Pretreatment
311
15.3
History of
Pretreatment
Economic Analysis
313
15.4
Methodologies for Economic Assessment
314
15.5
Overview of
Pretreatment
Technologies
315
15.5.1
Acidic Pretreatments
315
15.5.2
Alkaline Pretreatments
315
15.5.3
Solvent-based Pretreatments
316
15.6
Comparative
Pretreatment
Economics
316
15.6.1
Modeling Basis and Assumptions for Comparative CAFI Analysis
317
15.6.2
CAFI Project Comparative Data
320
15.6.3
Reactor Design and Costing Data
320
15.6.4
Comparison of Sugar and
Ethanol
Yields
324
15.6.5
Comparison of
Pretreatment
Capital Costs
325
15.6.6
Comparison of MESP
326
15.7
Impact of Key Variables on
Pretreatment
Economics
327
15.7.1
Yield
327
15.7.2
Conversion to Oligomers/Monomers (Shift of Burden between Enzymes
and
Pretreatment)
328
15.7.3
Biomass Loading/Concentration
328
15.7.4
Chemical Loading/Recovery/Metallurgy
329
15.7.5
Reaction Conditions: Pressure, Temperature, Residence Time
330
xii Contents
15.7.6
Reactor
Orientation:
Horizontal/Vertical
330
15.7.7
Batch
versus
Continuous
Processing
330
15.8
Future Needs for Evaluation of
Pretreatment
Economics
331
15.9
Conclusions
332
Acknowledgements
332
References
332
16
Progress in the Summative Analysis of Biomass Feedstocks for Biofuels Production
335
F.A. Agblevor and].
Pereira
16.1
Introduction
335
16.2
Preparation of Biomass Feedstocks for Analysis
337
16.3
Determination of Non-structural Components of Biomass Feedstocks
338
16.3.1
Moisture Content of Biomass Feedstocks
338
16.3.2
Determination of Ash in Biomass
338
16.3.3
Protein Content of Biomass
338
16.3.4
Extractives Content of Biomass
339
16.4
Quantitative Determination of
Lignin
Content of Biomass
340
16.5
Quantitative Analysis of Sugars in Lignocellulosic Biomass
342
16.5.1
Holocellulose Content of Plant Cell Walls
342
16.5.2
Monoethanolamine Method for Cellulose Determination
343
16.6
Chemical Hydrolysis of Biomass Polysaccharides
343
16.6.1
Mineral Acid Hydrolysis
343
16.6.2
Trifluoroacetic Acid (TFA)
344
16.6.3
Methanolysis
344
16.7
Analysis of Monosaccharides
345
16.7.1
Colorimetrie
Analysis of Biomass Monosaccharides
345
16.7.2 Gas Chromatographie
Sugar Analysis
345
16.8
Gas Chromatography-Mass Spectrometry (GC/MS)
347
16.9
High-performance Liquid
Chromatographie
Sugar Analysis
347
16.10
NMR Analysis of Biomass Sugars
349
16.11
Conclusions
349
References
349
17
High-throughput NIR Analysis of Biomass
Pretreatment
Streams
355
Bonnie R. Homes
17.1
Introduction
355
17.2
Rapid Analysis Essentials
356
17.2.1
Rapid
Spectroscopie
Techniques
357
17.2.2
Calibration and Validation Samples
358
17.2.3
Quality Calibration Data for Each Calibration Sample
359
17.2.4
Multivariate Analysis to Resolve Complex Sample Spectra
362
17.2.5
Validation of New Methods
364
17.2.6
Standard Reference Materials and Protocols for Ongoing QA/QC
364
17.3
Summary
366
References
367
Contents xiii
18 Plant Biomass
Characterization:
Application
of Solution- and Solid-state
NM R Spectroscopy
269
Yunqiao
Pu,
Bassem Hallac and
Arthur
J. Ragauskas
18.1
Introduction
3^9
18.2
Plant
Biomass
Constituents
370
18.3
Solution-state NMR Characterization of
Lignin
371
18.3.1
Lignin
Sample Preparation
372
18.3.2
Ή
NMR Spectroscopy 372
18.3.3
13C NMR Spectroscopy 372
18.3.4
HSQC Correlation Spectroscopy
375
18.3.5
31P NMR Spectroscopy
377
18.4
Solid-state NMR Characterization of Plant Cellulose
3 81
18.4.1
CP/MAS^C NMR Analysis of Cellulose
381
18.4.2
Cellulose Crystallinity
З8З
18.4.3
Cellulose
Ultrastructure
З85
18.5
Future Perspectives
З87
Acknowledgements
З87
References
387
19
Xylooligosaccharides Production, Quantification, and Characterization in Context
of Lignocellulosic Biomass
Pretreatment 39I
Qing Qing, Hongjia Li, Rajeev Kumar and Charles E. Wyman
19.1
Introduction
391
19.1.1
Definition of Oligosaccharides
391
19.1.2
Types of Oligosaccharides Released during Lignocellulosic
Biomass
Pretreatment
392
19.1.3
The Importance of Measuring Xylooligosaccharides
392
19.2
Xylooligosaccharides Production
394
19.2.1
Thermochemical Production of XOs
394
19.2.2
Production of XOs by Enzymatic Hydrolysis
396
19.3
Xylooligosaccharides Separation and Purification
397
19.3.1
Solvent Extraction
397
19.3.2
Adsorption by Surface Active Materials
397
19.3.3 Chromatographie
Separation Techniques
398
19.3.4
Membrane Separation
399
19.3.5
Centrifugal Partition Chromatography
401
19.4
Characterization and Quantification of Xylooligosaccharides
402
19.4.1
Measuring Xylooligosaccharides by Quantification of
Reducing Ends
402
19.4.2
Characterizing Xylooligosaccharides Composition
402
19.4.3
Direct Characterization of Different DP Xylooligosaccharides
403
19.4.4
Determining Detailed Structures of Oligosaccharides
by MS and NMR
408
19.5
Concluding Remarks
408
Acknowledgements
409
References
410
xiv Contents
20
Experimental
Pretreatment Systems
from Laboratory to Pilot Scale
417
Richard
T. Eländer
20.1
Introduction
417
20.2
Laboratory-scale
Pretreatment
Equipment
421
20.2.1
Heating and Cooling Capability
421
20.2.2
Contacting of Biomass Particles with Water and/or
Pretreatment
Chemicals
421
20.2.3
Mass and Heat Transfer
422
20.2.4
Proper Materials of Construction
423
20.2.5
Instrumentation and Control Systems
424
20.2.6
Translating to Pilot-scale
Pretreatment
Systems
424
20.3
Pilot-scale Batch
Pretreatment
Equipment
424
20.4
Pilot-scale Continuous
Pretreatment
Equipment
427
20.4.1
Feedstock Handling and Size Reduction
427
20.4.2
Pretreatment
Chemical and Water Addition
429
20.4.3
Pressurized Continuous
Pretreatment
Feeder Equipment
432
20.4.4
Pretreatment
Reactor Throughput and Residence Time Control
436
20.4.5
Reactor Discharge Devices
438
20.4.6
Blow-down Vessel and Flash Vapor Recovery
438
20.5
Continuous Pilot-scale
Pretreatment
Reactor Systems
439
20.5.1
Historical Development of Pilot-scale Reactor Systems
439
20.5.2
NREL Gravity-flow Reactor Systems
441
20.6
Summary
445
Acknowledgements
446
References
447
21
Experimental Enzymatic Hydrolysis Systems
451
Todd Lloyd and Chaogang Liu
21.1
Introduction
451
21.2
Cellulases
452
21.2.1
Endoglucanase
452
21.2.2
Cellobiohydrolase
453
21.2.3 ß-glucosidase 453
21.3
Hemicellulases
453
21.4
Kinetics of Enzymatic Hydrolysis
454
21.4.1
Empirical Models
455
21.4.2
Michaelis-Menten-based Models
455
21.4.3
Adsorption in Cellulose Hydrolysis Models
456
21.4.4
Rate Limitations and Decreasing Rates with Increasing
Conversion
457
21.4.5
Summary of Enzyme Reaction Kinetics
459
21.5
Experimental Hydrolysis Systems
460
21.5.1
Laboratory Protocols
460
21.5.2
Considerations for Scale-up of Hydrolysis Processes
463
21.6
Conclusion
465
References
465
Contents xv
22
High-throughput
Pretreatment
and Hydrolysis Systems for Screening Biomass Species
in Aqueous
Pretreatment
of Plant Biomass
471
Jaclyn
DeMartini
and Charles E. Wyman
22.1
Introduction: The Need for High-throughput Technologies
47
1
22.2
Previous High-throughput Systems and Application to
Pretreatment
and
Enzymatic Hydrolysis
472
22.3
Current HTPH Systems
473
22.4
Key Steps in HTPH Systems
47g
22.4.1
Material Preparation
47g
22.4.2
Material Distribution
479
22.4.3
Pretreatment
and Enzymatic Hydrolysis
480
22.4.4
Sample Analysis
48
22.5
HTPH Philosophy, Difficulties, and Limitations
482
22.6
Examples of Research Enabled by HTPH Systems
484
22.7
Future Applications
485
22.8
Conclusions and Recommendations
485
References
486
23
Laboratory
Pretreatment
Systems to Understand Biomass Deconstruction
489
Bin Yang andMelvin Tucker
23.1
Introduction
489
23.2
Laboratory-scale Batch Reactors
491
23.2.1
Sealed Glass Reactors
491
23.2.2
Tubular Reactors
492
23.2.3
Mixed Reactors
495
23.2.4
Zipperclave
496
23.2.5
Microwave Reactors
497
23.2.6
Steam Reactors
499
23.3
Laboratory-scale Continuous
Pretreatment
Reactors
501
23.4
Deconstruction of Biomass with Bench-Scale
Pretreatment
Systems
503
23.5
Heat and Mass Transfer
505
23.5.1
Mass Transfer
506
23.5.2
Direct and Indirect Heating
506
23.6
Biomass Handling and Comminuting
508
23.7
Construction Materials
508
23.7.1
Overall Considerations
508
23.7.2
Materials of Construction
509
23.8
Criteria of Reactor Selection and Applications
510
23.8.1
Effect of High/Low Solids Concentration on
Reactor Choices
510
23.8.2
Role of Heat-up and Cool-down Rates in Laboratory
Reactor Selection
510
23.8.3
Effect of Mixing and Catalyst Impregnation on
Reactor Design
510
23.8.4
High Temperatures and Short Residence Times Result in
High Yields
511
xv/
Contenti
23.8.5
Pretreatment
Severity: Tradeoffs of Time and Temperature
511
23.8.6
Minimizing Construction and Operating Costs
512
23.9
Summary
513
Acknowledgements
514
References
514
Index
523
Aqueous
Pretreatment
of Plant
Biomass for Biological and Chemical
Conversion to Fuels and Chemicals
Editor
Charles E. Wyman
Department of Chemical and Environmental Engineering and Center for Environmental Research and
Technology, University of California, Riverside, USA and BioEnergy Science Center, Oak Ridge, USA
Series Editor
Christian Stevens
Faculty of
Bioscience
Engineering, Ghent University,
Ghent, Belgium
Plant biomass is attracting increasing attention as a sustainable
resource for large-scale production of renewable fuels and chemicals.
However, in order to successfully compete with petroleum, it is vital
that biomass conversion processes are designed to minimize costs
and maximize yields. Advances in
pretreatment
technology are
critical in order to develop high-yielding, cost-competitive
routesto
renewable fuels and chemicals,
Aqueous
Pretreatment
of Plant Biomass for Biological
and Chemical Conversion to Fuels and Chemicals presents
a comprehensive overview of the currently available aqueous
pretreatment
technologies for cellulosic biomass, highlighting the
fundamental chemistry and biology of each method, key attributes
and limitations, and opportunities for future advances,
This comprehensive reference book provides an authoritative
source of information on the
pretreatment
of cellulosic biomass
to aid those experienced in the field to access the most current
information on the topic. It will also be invaluable to those entering
the growing field of biomass conversion.
Topics covered include:
The importance of biomass conversion
to fuels
The role of
pretreatment in
biological
and chemical conversion of biomass
Composition and structure of biomass,
and recalcitrance to conversion
Fundamentals of biomass
pretreatment
at low, neutral and high
pH
Ionic liquid and organosolv pretreatments
to fractionate biomass
Comparative data for application of
leading pretreatments and effect of
enzyme formulations
Physical and chemical features of
pretreated biomass
Economics of
pretreatment
for biological
processing
Methods of analysis and enzymatic
conversion of biomass streams
Experimental
pretreatment
systems from
multiwell plates to pilot plant operations
Also available
as an e-book
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV041293240 |
callnumber-first | T - Technology |
callnumber-label | TP248 |
callnumber-raw | TP248.27.P55 |
callnumber-search | TP248.27.P55 |
callnumber-sort | TP 3248.27 P55 |
callnumber-subject | TP - Chemical Technology |
classification_rvk | VN 9250 ZP 3760 |
ctrlnum | (OCoLC)849469064 (DE-599)BVBBV041293240 |
dewey-full | 333.95/39 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 333 - Economics of land and energy |
dewey-raw | 333.95/39 |
dewey-search | 333.95/39 |
dewey-sort | 3333.95 239 |
dewey-tens | 330 - Economics |
discipline | Chemie / Pharmazie Energietechnik Wirtschaftswissenschaften |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03732nam a2200865zc 4500</leader><controlfield tag="001">BV041293240</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140729 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130927s2013 xxkad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2012051128</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470972021</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-470-97202-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849469064</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041293240</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.27.P55</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">333.95/39</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 9250</subfield><subfield code="0">(DE-625)147638:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3760</subfield><subfield code="0">(DE-625)157974:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals</subfield><subfield code="c">editor Charles E. Wyman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 538 S.</subfield><subfield code="b">Ill., graph. Darst</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series in renewable resources</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant biomass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass chemicals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Industriechemikalie</subfield><subfield code="0">(DE-588)4226178-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Chemie</subfield><subfield code="0">(DE-588)4078178-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vorbehandlung</subfield><subfield code="g">Technik</subfield><subfield code="0">(DE-588)4188637-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biomasseverarbeitung</subfield><subfield code="0">(DE-588)4400055-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Alternativkraftstoff</subfield><subfield code="0">(DE-588)4125883-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kraftstoffherstellung</subfield><subfield code="0">(DE-588)4165454-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biomasse</subfield><subfield code="0">(DE-588)4006877-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biokraftstoff</subfield><subfield code="0">(DE-588)4145658-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nachhaltigkeit</subfield><subfield code="0">(DE-588)4326464-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grundstoff</subfield><subfield code="0">(DE-588)4158411-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biomasse</subfield><subfield code="0">(DE-588)4006877-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Technische Chemie</subfield><subfield code="0">(DE-588)4078178-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Vorbehandlung</subfield><subfield code="g">Technik</subfield><subfield code="0">(DE-588)4188637-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Biomasse</subfield><subfield code="0">(DE-588)4006877-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Biomasseverarbeitung</subfield><subfield code="0">(DE-588)4400055-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Kraftstoffherstellung</subfield><subfield code="0">(DE-588)4165454-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Alternativkraftstoff</subfield><subfield code="0">(DE-588)4125883-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="5"><subfield code="a">Nachhaltigkeit</subfield><subfield code="0">(DE-588)4326464-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Biokraftstoff</subfield><subfield code="0">(DE-588)4145658-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Biomasse</subfield><subfield code="0">(DE-588)4006877-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Industriechemikalie</subfield><subfield code="0">(DE-588)4226178-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="3"><subfield code="a">Grundstoff</subfield><subfield code="0">(DE-588)4158411-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Biomasseverarbeitung</subfield><subfield code="0">(DE-588)4400055-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="2"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wyman, Charles E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026742176&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026742176&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026742176</subfield></datafield></record></collection> |
id | DE-604.BV041293240 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:53:33Z |
institution | BVB |
isbn | 9780470972021 |
language | English |
lccn | 2012051128 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026742176 |
oclc_num | 849469064 |
open_access_boolean | |
owner | DE-703 DE-29T |
owner_facet | DE-703 DE-29T |
physical | XXVI, 538 S. Ill., graph. Darst |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Wiley |
record_format | marc |
series2 | Wiley series in renewable resources |
spelling | Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals editor Charles E. Wyman 1. publ. Chichester Wiley 2013 XXVI, 538 S. Ill., graph. Darst txt rdacontent n rdamedia nc rdacarrier Wiley series in renewable resources Includes index. Plant biomass Biomass energy Biomass chemicals Biotechnology Industriechemikalie (DE-588)4226178-8 gnd rswk-swf Technische Chemie (DE-588)4078178-1 gnd rswk-swf Vorbehandlung Technik (DE-588)4188637-9 gnd rswk-swf Biomasseverarbeitung (DE-588)4400055-8 gnd rswk-swf Katalyse (DE-588)4029921-1 gnd rswk-swf Alternativkraftstoff (DE-588)4125883-6 gnd rswk-swf Kraftstoffherstellung (DE-588)4165454-7 gnd rswk-swf Grüne Chemie (DE-588)7563215-9 gnd rswk-swf Biomasse (DE-588)4006877-8 gnd rswk-swf Biokraftstoff (DE-588)4145658-0 gnd rswk-swf Nachhaltigkeit (DE-588)4326464-5 gnd rswk-swf Grundstoff (DE-588)4158411-9 gnd rswk-swf Biotechnologie (DE-588)4069491-4 gnd rswk-swf Biomasse (DE-588)4006877-8 s Technische Chemie (DE-588)4078178-1 s Vorbehandlung Technik (DE-588)4188637-9 s DE-604 Biomasseverarbeitung (DE-588)4400055-8 s Biotechnologie (DE-588)4069491-4 s Kraftstoffherstellung (DE-588)4165454-7 s Alternativkraftstoff (DE-588)4125883-6 s Nachhaltigkeit (DE-588)4326464-5 s Biokraftstoff (DE-588)4145658-0 s Grüne Chemie (DE-588)7563215-9 s Katalyse (DE-588)4029921-1 s Industriechemikalie (DE-588)4226178-8 s Grundstoff (DE-588)4158411-9 s Wyman, Charles E. Sonstige oth Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026742176&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026742176&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals Plant biomass Biomass energy Biomass chemicals Biotechnology Industriechemikalie (DE-588)4226178-8 gnd Technische Chemie (DE-588)4078178-1 gnd Vorbehandlung Technik (DE-588)4188637-9 gnd Biomasseverarbeitung (DE-588)4400055-8 gnd Katalyse (DE-588)4029921-1 gnd Alternativkraftstoff (DE-588)4125883-6 gnd Kraftstoffherstellung (DE-588)4165454-7 gnd Grüne Chemie (DE-588)7563215-9 gnd Biomasse (DE-588)4006877-8 gnd Biokraftstoff (DE-588)4145658-0 gnd Nachhaltigkeit (DE-588)4326464-5 gnd Grundstoff (DE-588)4158411-9 gnd Biotechnologie (DE-588)4069491-4 gnd |
subject_GND | (DE-588)4226178-8 (DE-588)4078178-1 (DE-588)4188637-9 (DE-588)4400055-8 (DE-588)4029921-1 (DE-588)4125883-6 (DE-588)4165454-7 (DE-588)7563215-9 (DE-588)4006877-8 (DE-588)4145658-0 (DE-588)4326464-5 (DE-588)4158411-9 (DE-588)4069491-4 |
title | Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals |
title_auth | Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals |
title_exact_search | Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals |
title_full | Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals editor Charles E. Wyman |
title_fullStr | Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals editor Charles E. Wyman |
title_full_unstemmed | Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals editor Charles E. Wyman |
title_short | Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals |
title_sort | aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals |
topic | Plant biomass Biomass energy Biomass chemicals Biotechnology Industriechemikalie (DE-588)4226178-8 gnd Technische Chemie (DE-588)4078178-1 gnd Vorbehandlung Technik (DE-588)4188637-9 gnd Biomasseverarbeitung (DE-588)4400055-8 gnd Katalyse (DE-588)4029921-1 gnd Alternativkraftstoff (DE-588)4125883-6 gnd Kraftstoffherstellung (DE-588)4165454-7 gnd Grüne Chemie (DE-588)7563215-9 gnd Biomasse (DE-588)4006877-8 gnd Biokraftstoff (DE-588)4145658-0 gnd Nachhaltigkeit (DE-588)4326464-5 gnd Grundstoff (DE-588)4158411-9 gnd Biotechnologie (DE-588)4069491-4 gnd |
topic_facet | Plant biomass Biomass energy Biomass chemicals Biotechnology Industriechemikalie Technische Chemie Vorbehandlung Technik Biomasseverarbeitung Katalyse Alternativkraftstoff Kraftstoffherstellung Grüne Chemie Biomasse Biokraftstoff Nachhaltigkeit Grundstoff Biotechnologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026742176&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026742176&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wymancharlese aqueouspretreatmentofplantbiomassforbiologicalandchemicalconversiontofuelsandchemicals |