Elementary molecular quantum mechanics: mathematical methods and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2013
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | 1. Aufl. u.d.T.: Magnasco, Valerio: Elementary methods of molecular quantum mechanics |
Beschreibung: | XX, 932 S. graph. Darst. |
ISBN: | 9780444626479 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041281888 | ||
003 | DE-604 | ||
005 | 20140414 | ||
007 | t | ||
008 | 130920s2013 d||| |||| 00||| eng d | ||
020 | |a 9780444626479 |9 978-0-444-62647-9 | ||
035 | |a (OCoLC)862802930 | ||
035 | |a (DE-599)BVBBV041281888 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-703 | ||
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
084 | |a VE 5650 |0 (DE-625)147118:253 |2 rvk | ||
084 | |a CHE 020f |2 stub | ||
084 | |a CHE 150f |2 stub | ||
100 | 1 | |a Magnasco, Valerio |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elementary molecular quantum mechanics |b mathematical methods and applications |c Valerio Magnasco |
250 | |a 2. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2013 | |
300 | |a XX, 932 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a 1. Aufl. u.d.T.: Magnasco, Valerio: Elementary methods of molecular quantum mechanics | ||
650 | 0 | 7 | |a Quantenchemie |0 (DE-588)4047979-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenchemie |0 (DE-588)4047979-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026255309&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026255309&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-026255309 |
Datensatz im Suchindex
_version_ | 1804150753554595840 |
---|---|
adam_text | Contents
Preface
................................................................................................................................................xix
PART
1
MATHEMATICAL METHODS
CHAPTER
1
Mathematical foundations and approximation methods
..................
з
1.1.
Mathematical Foundations
........................................................................................4
.1.1.
Regular functions
............................................................................................4
. 1.2.
Schmidt orthogonalization
..............................................................................5
.1.3. Löwdin
orthogonalization
...............................................................................8
.1.4.
Set of
orthonormal
functions and basis set
....................................................8
.1.5.
Linear operators
..............................................................................................9
.1.6.
Hermitian operators
......................................................................................10
1.1.7.
Expansion theorem
.......................................................................................14
1.1.8.
Basic principles of quantum mechanics
.......................................................17
1.2.
The variational method
............................................................................................19
1.2.1.
Non-linear parameters
..................................................................................21
1.2.2.
Linear parameters: the
Ritz
method
.............................................................21
1.3.
Perturbative Methods for Stationary States
.............................................................25
1.3.1.
RS perturbation theory
.................................................................................25
1.3.2.
Second-order approximation methods in RS perturbation theory
...............32
1.3.3.
BW perturbation theory
................................................................................37
1.3.4.
Perturbation methods without partitioning of the Hamiltonian
..................40
1.3.5.
Perturbation theories including exchange (SAPTs)
.....................................45
1.3.6.
The moment method
.....................................................................................53
1.4.
The Wentzel-Kramers-Brillouin Method
...............................................................55
1.5.
Problems
1...............................................................................................................59
1.6.
Solved Problems
......................................................................................................62
CHAPTER
2
Coordinate systems
...................................................................69
2.1.
Introduction
..............................................................................................................69
2.2.
Systems of Orthogonal Coordinates
........................................................................71
2.3.
Generalized Coordinates
..........................................................................................73
2.4.
Cartesian Coordinates (x,y,z)
...................................................................................74
2.5.
Spherical Coordinates (r,6,<p)
..................................................................................74
2.6.
Spheroidal Coordinates
(μ,ν,φ)
...............................................................................75
2.7.
Parabolic Coordinates
(ξ,η,φ)
..................................................................................76
2.8.
Problems
2...............................................................................................................78
2.9.
Solved Problems
......................................................................................................80
CHAPTER
3
Differential equations in quantum mechanics
..............................87
3.1.
Introduction
..............................................................................................................88
3.2.
Partial Differential Equations
..................................................................................88
« ■
VII
viii Contents
3.3.
Separation of Variables
............................................................................................89
3.3.1.
The particle in a three-dimensional box
......................................................89
3.3.2.
The three-dimensional harmonic oscillator
.................................................91
3.3.3.
The atomic one-electron system
..................................................................91
3.3.4.
The molecular one-electron system
.............................................................93
3.3.5.
The hydrogen atom in a uniform electric field
............................................96
3.4.
Solution by Series Expansion
..................................................................................98
3.5.
Solution Near Singular Points
...............................................................................100
3.6.
The One-Dimensional Harmonic Oscillator
.........................................................101
3.7.
The Atomic One-Electron System
........................................................................104
3.7.1.
Solution of the radial equation
...................................................................105
3.7.2.
Solution of the
Ф
-equatíon
.........................................................................
109
3.7.3.
Solution of the
Θ
-equation
........................................................................
109
3.7.4.
The hydrogen-like atomic
orbitais
.............................................................115
3.8.
The Hydrogen Atom in an Electric Field
.............................................................117
3.9.
The Hydrogen Molecular Ion
H~ľ
.........................................................................120
3.10.
The Stark Effect in Atomic Hydrogen
..................................................................124
3.10.1.
Solution of the ^-equation in the zero-field case
.....................................124
3.10.2.
The first-order Stark effect
.......................................................................128
3.11.
Appendix: Checking the Solutions
........................................................................131
3.11.1-
The radial equation of the
H-atom
in spherical coordinates
...................131
3.11.2.
The
Θ
-equation
of the
H-atom
in spherical coordinates
.........................132
3.11.3.
The ^-equation of the
H-atom
in parabolic coordinates
..........................135
3.12.
Problems
3.............................................................................................................135
3.13.
Solved Problems
....................................................................................................137
CHAPTER
4
Special functions
....................................................................151
4.1.
Introduction
............................................................................................................152
4.2.
Legendre Functions
...............................................................................................152
4.2.1.
Legendre polynomials and associated Legendre polynomials
..................152
4.2.2.
Recurrence relations for Legendre polynomials
........................................154
4.2.3.
Series of Legendre polynomials
.................................................................154
4.2.4.
Legendre functions of first and second kind
.............................................155
4.2.5.
Neumann s formula for the Legendre functions
........................................157
4.3.
Laguerre Functions
................................................................................................158
4.3.1.
Laguerre polynomials and Laguerre functions
..........................................158
4.3.2.
Associated Laguerre polynomials
..............................................................159
4.3.3.
Basic integrals over associated Laguerre functions
...................................161
4.4.
Hermite Functions
.................................................................................................163
4.4.1.
Hermite polynomials
..................................................................................163
4.4.2.
Hermite functions
.......................................................................................164
4.4.3.
Integrals over Hermite functions
................................................................165
4.5.
Hypergeometric Functions
....................................................................................166
4.5.1.
Hypergeometric series and differential equation
.......................................166
4.5.2.
Confluent hypergeometric functions
..........................................................168
Contents ix
4.6. Bessel
Functions...................................................................................................
170
4.6.1. Bessel
functions of
integral
order
.............................................................170
4.6.2. Bessel
functions of half-integral order
......................................................171
4.6.3.
Spherical Bessel functions
........................................................................172
4.6.4.
Modified Bessel functions
.........................................................................176
4.7.
Functions Defined by Integrals
.............................................................................178
4.7.1.
The gamma function
..................................................................................178
4.7.2.
The incomplete gamma function
...............................................................178
4.7.3.
From the gamma function to the exponential integral function
................179
4.7.4.
The exponential integral function
..............................................................180
4.7.5.
The generalized exponential integral function
..........................................181
4.7.6.
Further functions
........................................................................................181
4.8.
The Dirac ¿-Function
............................................................................................184
4.9.
The Fourier Transform
..........................................................................................185
4.10.
The Laplace Transform
.........................................................................................188
4.11.
Spherical Tensors
...................................................................................................190
4.11.1.
Spherical tensors in complex form
..........................................................190
4.11.2.
Spherical tensors in real form
..................................................................191
4.11.3.
Generalized spherical tensors
...................................................................195
4.12.
Orthogonal Polynomials
........................................................................................195
4.13.
Padé Approximants
................................................................................................197
4.14.
Green s Functions
..................................................................................................199
4.15.
Problems
4.............................................................................................................202
4.16.
Solved Problems
....................................................................................................203
CHAPTER
5
Functions of a complex variable
...............................................215
5.1.
Functions of a Complex Variable
..........................................................................215
5.1.1.
Complex numbers
.......................................................................................215
5.1.2.
Functions of a complex variable
................................................................217
5.1.3.
Regular functions
........................................................................................218
5.1.4.
Elementary operations
................................................................................219
5.1.5.
Power series of elementary functions
........................................................219
5.1.6.
Many-valued functions
...............................................................................223
5.2.
Complex Integral Calculus
....................................................................................223
5.2.1.
Line integrals
..............................................................................................223
5.2.2.
Integrals in the complex plane and the Cauchy theorem
..........................224
5.2.3.
Integration over a not simply connected domain
......................................225
5.2.4.
Cauchy s integral representation
................................................................227
5.2.5.
Taylor s expansion around a singularity
....................................................228
5.2.6.
Laurent s expansion
....................................................................................228
5.2.7.
Zeros of a regular function
.........................................................................230
5.2.8.
Analytic continuation
.................................................................................230
5.3.
Calculus of Residues
.............................................................................................232
5.3.1.
The residue theorem
...................................................................................232
5.3.2.
The Jordan lemma
......................................................................................234
Contents
5.3.3.
Sum of non-convergent series
....................................................................235
5.3.4.
Evaluation of integrals of functions of real variable
.................................238
5.4.
Problems
5.............................................................................................................241
5.5.
Solved Problems
....................................................................................................242
CHAPTERS Matrices
.................................................................................247
6.1.
Definitions and Elementary Properties
.................................................................247
6.2.
The Partitioning of Matrices
.................................................................................248
6.3.
Properties of Determinants
....................................................................................250
6.4.
Special Matrices
....................................................................................................255
6.5.
The Matrix Eigenvalue Problem
...........................................................................256
6.6.
Functions of Hermitian Matrices
..........................................................................261
6.6.1.
Analytic functions
......................................................................................261
6.6.2.
Projectors and canonical form
...................................................................262
6.6.3.
Examples
....................................................................................................262
6.7.
The Matrix Pseudoeigenvalue Problem
................................................................266
6.8.
The
Lagrange
Interpolation Formula
....................................................................268
6.9.
The Cayley-Hamilton Theorem
............................................................................270
6.10.
The Eigenvalue Problem in
Hiickeľs
Theory of the
π
Electrons of Benzene
.... 270
6.10.1.
General considerations
.............................................................................270
6.10.2.
Unitary transformation diagonalizing the
Hiickeľs
matrix
.....................272
6.11.
Problems
6.............................................................................................................273
6.12.
Solved Problems
....................................................................................................278
CHAPTER
7
Molecular symmetry
................................................................297
7.1.
Introduction
............................................................................................................297
7.2.
Symmetry and Quantum Mechanics
.....................................................................298
7.3.
Molecular Symmetry
.............................................................................................299
7.4.
Symmetry Operations as Transformation of the Coordinate Axes
......................302
7.4.1.
Passive and active representations of symmetry operations
......................302
7.4.2.
Symmetry transformations in coordinate space
.........................................303
7.4.3.
Symmetry operators and transformations in function space
.....................305
7.4.4.
Matrix representatives of symmetry operators
..........................................308
7.4.5.
Similarity transformations
..........................................................................310
7.5.
Applications
...........................................................................................................310
7.5.1.
The fundamental theorem of symmetry
.....................................................310
7.5.2.
Selection rules
............................................................................................311
7.5.3.
Ground state electron configuration of polyatomic molecules
..................312
7.6.
Problems
7.............................................................................................................313
7.7.
Solved Problems
....................................................................................................315
CHAPTER
8
Abstract group theory
..............................................................323
8.1.
Introduction
............................................................................................................323
8.2.
Axioms of Group Theory
......................................................................................324
Contents
XI
8.3.
Examples of Groups
............................................................................................325
8.4.
Multiplication Table
............................................................................................326
8.5.
Subgroups
............................................................................................................327
8.6.
Isomorphism
........................................................................................................328
8.7.
Conjugation and Classes
.....................................................................................331
8.8.
Direct-Product Groups
........................................................................................332
8.9.
Representations and Characters
..........................................................................333
8.10.
Irreducible Representations
.................................................................................338
8.11.
Projectors and Symmetry-Adapted Functions
....................................................340
8.12.
The Symmetric Group
.........................................................................................345
8.13.
Molecular Point Groups
......................................................................................351
8.14.
Continuous Groups
..............................................................................................353
8.15.
Rotation Groups
..................................................................................................356
8.15.1.
Axial groups
...........................................................................................356
8.15.2.
The spherical group
...............................................................................358
8.15.3.
Transformation properties of spherical harmonics
................................362
8.16.
Problems
8...........................................................................................................364
8.17.
Solved Problems
..................................................................................................368
CHAPTER
9
The electron spin
..................................................................381
9.1.
Introduction
.........................................................................................................381
9.2.
Electron Spin according to
Pauli
and the
Zeeman
Effect
..................................382
9.3.
Theory of One-Electron Spin
..............................................................................386
9.4.
Matrix Representation of Spin Operators
...........................................................389
9.5.
Theory of Two-Electron Spin
.............................................................................392
9.6.
Theory of Many-Electron Spin
...........................................................................394
9.7.
The Kotani Synthetic Method
...........................................................................397
9.8. Löwdin
Spin Projection Operators
....................................................................398
9.9.
Problems
9...........................................................................................................400
9.10.
Solved Problems
..................................................................................................402
CHAPTER
10
Angular momentum methods for atoms
....................................417
10.1.
Introduction
.........................................................................................................417
10.2.
The Vector Model
...............................................................................................418
10.2.1.
Coupling of angular momenta
...............................................................418
10.2.2.
LS coupling and
multiplet
structure
......................................................421
10.3.
Construction of States of Definite Angular Momentum
....................................425
10.3.1.
The matrix method
.................................................................................425
10.3.2.
The projection operator method
............................................................431
10.4.
An Outline of Advanced Methods for Coupling Angular Momenta
.................431
10.4.1.
Clebsch-Gordan coefficients and Wigner 3-j and
9-у
symbols
............431
10.4.2.
Gaunt coefficients and coupling rules
...................................................433
10.5.
Problems
10.........................................................................................................434
10.6.
Solved Problems
..................................................................................................437
XII
Contents
PART
2
APPLICATIONS
_____________________________________________
CHAPTER
11
The physical principles of quantum mechanics
.......................449
11.1.
The Orbital Model
..............................................................................................449
11.2.
The Fundamental Postulates of Quantum Mechanics
........................................450
11.2.1.
Correspondence between
observables
and operators
............................450
11.2.2.
State function and average values of
observables
.................................454
11.2.3.
Time evolution of state function
............................................................455
11.3.
The Physical Principles of Quantum Mechanics
...............................................456
11.3.1.
Wave-particle dualism
...........................................................................456
11.3.2.
Atomicity of matter
................................................................................458
1
1
.3.3.
Schroedinger s wave equation
...............................................................459
11.3.4.
Born interpretation
.................................................................................460
11.3.5.
Measure of
observables
.........................................................................461
11.4.
Problems
11.........................................................................................................463
11.5.
Solved Problems
..................................................................................................464
CHAPTER
12
Atomic
orbitais
......................................................................467
12.1.
Introduction
.........................................................................................................467
12.2.
Hydrogen-Like Atomic
Orbitals.........................................................................468
12.3.
Slater-Type
Orbitals............................................................................................473
12.4.
Gaussian-Type
Orbitals.......................................................................................475
12.5.
Problems
12.........................................................................................................477
12.6.
Solved Problems
..................................................................................................478
CHAPTER
13
Variational calculations
.........................................................483
13.1.
Introduction
.........................................................................................................483
13.2.
The Variational Method
......................................................................................484
13.2.1.
Variational principles in first order
........................................................484
13.2.2.
Variational approximations
....................................................................485
13.2.3.
Basis functions and variational parameters
...........................................486
13.3.
Non-Linear Parameters
.......................................................................................487
13.3.1.
The Is ground state of the atomic one-electron system
.......................487
13.3.2.
The first 2s, 2p excited states of the atomic one-electron system
........490
13.3.3.
The Is2 ground state of the atomic two-electron system
......................493
13.4.
Linear Parameters and the
Ritz
Method
.............................................................496
13.5.
Atomic Applications of the
Ritz
Method
...........................................................497
13.5.1.
The first h2s excited state of the atomic two-electron system
............497
13.5.2.
The first s2p excited state of the atomic two-electron system
............499
13.5.3.
Results for hydrogen-like AOs
..............................................................502
13.6.
Molecular Applications of the
Ritz
Method
.......................................................503
13.6.1.
The ground and first excited state of the
Н^
molecular ion
.................503
13.6.2.
The interaction energy and its components
...........................................505
13.7.
Variational Principles in Second Order
..............................................................510
13.7.1.
The
dipole
polarizability of the
H
atom
................................................510
13.7.2.
The London attraction between two ground-state
H
atoms
..................512
Contents xiii
13.8. Problems 13.........................................................................................................514
13.9.
Solved
Problems..................................................................................................517
CHAPTER
14
Many-electron wavefunctions
and model Hamiltonians
............533
14.1.
Introduction.........................................................................................................
534
14.2.
Antisymmetry of the Electronic Wavefunction and the Pauli s Principle
.........534
14.2.1.
Two-electron wavefunctions
..................................................................534
14.2.2.
Many-electron wavefunctions and the Slater method
...........................535
14.3.
Electron Distribution Functions
..........................................................................539
14.3.1.
One-electron distribution functions: general definitions
.......................539
14.3.2.
Electron density and spin density
..........................................................540
14.3.3.
Two-electron distribution functions: general definitions
......................543
14.4.
Average Values of One- and Two-Electron Operators
.......................................544
14.4.1.
Symmetrical sums of one-electron operators
........................................544
14.4.2.
Symmetrical sums of two-electron operators
........................................545
14.4.3.
Average value of the electronic energy
.................................................546
14.5.
The Slater s Rules
...............................................................................................546
14.6.
Pople s Two-Dimensional Chart of Quantum Chemistry
..................................548
14.7.
Hartree-Fock Theory for Closed Shells
.............................................................550
14.7.1.
Basic theory and properties of the fundamental invariant
ρ
.................550
14.7.2.
Electronic energy for the HF wavefunction
..........................................552
14.7.3.
Roothaan s variational derivation of the HF equations
.........................553
14.7.4.
Hall-Roothaan s formulation of the LCAO-MO-SCF equations
.........555
14.7.5.
Mulliken population analysis
.................................................................558
14.7.6.
Atomic bases in quantum chemical calculations
..................................561
14.7.7.
Localization of molecular
orbitais
.........................................................565
14.8. Hückel s
Theory
..................................................................................................567
14.8.1.
Recurrence relation for the linear chain
................................................568
14.8.2.
General solution for the linear chain
.....................................................569
14.8.3.
General solution for the closed chain
....................................................570
14.8.4.
Alternant hydrocarbons
..........................................................................572
14.8.5.
An introduction to band theory of solids
..............................................577
14.9.
Semiempirical MO Methods
...............................................................................579
14.9.1.
Extended
Hückel s
theory
......................................................................580
14.9.2.
The CNDO method
................................................................................580
14.9.3.
The
INDO
method
.................................................................................584
14.9.4.
The ZINDO method
...............................................................................584
14.10.
Problems
14.........................................................................................................585
14.11.
Solved Problems
..................................................................................................588
CHAPTER
15
Valence bond theory and the chemical bond
...........................599
15.1.
Introduction
.........................................................................................................600
15.2.
The Chemical Bond in H2
..................................................................................601
15.2.1.
Failure of the MO theory for ground-state H2
......................................602
15.2.2.
The Heitler-London theory for H2
........................................................608
xiv Contents
15.2.3.
Equivalence
between
МО
-CI
and full VB for ground-state H2 and
improvements in the wavefunction
........................................................611
15.2.4.
The orthogonality catastrophe in the covalent VB theory for
ground-state H2
......................................................................................618
15.3.
Elementary VB Methods
....................................................................................623
15.3.1.
General formulation of VB theory
........................................................623
15.3.2.
Construction of VB structures for multiple bonds
................................626
15.3.3.
The allyl radical
(N=3)........................................................................627
15.3.4.
Cyclobutadiene
(N = 4)..........................................................................630
15.3.5.
VB description of simple molecules
.....................................................631
15.4.
Pauling s VB Theory for Conjugated and Aromatic Hydrocarbons
..................641
15.4.1.
Pauling s formula for the matrix elements of singlet covalent VB
structures
................................................................................................642
15.4.2.
Cyclobutadiene
.......................................................................................644
15.4.3.
Butadiene
................................................................................................645
15.4.4.
Allyl radical
...........................................................................................646
15.4.5.
Benzene
..................................................................................................647
15.4.6.
Naphthalene
............................................................................................655
15.4.7.
Derivation of The Pauling s formula for H2 and cyclobutadiene
.........657
15.5.
Hybridization and Directed Valency in Polyatomic Molecules
.........................661
15.5.1.
sp2 Hybridization in H20
.......................................................................661
15.5.2.
VB description of H2O
..........................................................................662
15.5.3.
Properties of hybridization
....................................................................664
15.5.4.
The principle of maximum overlap in VB theory
................................667
15.6.
Problems
15.........................................................................................................669
15.7.
Solved Problems
..................................................................................................671
CHAPTER
16
Post-Hartree-Fock methods
...................................................681
16.1.
Introduction
.........................................................................................................682
16.2.
Matrix Elements between Slater Determinants
..................................................682
16.2.1.
Slater s rules for
orthonormal
determinants
..........................................682
16.2.2. Löwdin s
density matrices for non-orthogonal determinants
...............683
16.3.
Spinless
Pair Functions and the Correlation Problem
........................................685
16.4.
Configurational Interaction Methods
..................................................................686
16.4.1.
Configuration interaction
.......................................................................687
16.4.2.
Large-scale
CI
methods
.........................................................................687
16.4.3.
Generalized valence bond methods
.......................................................688
16.4.4.
Cusp-corrected configurational interaction
...........................................691
16.4.5.
Kołos-Wolniewicz
wavefunctions
.........................................................692
16.5.
Mul
ticonfigurational-SCF Method
......................................................................695
16.6.
Môller-Plesset
Perturbation Theory
....................................................................696
16.7.
Second Quantization
...........................................................................................702
16.7.1.
Creation and annihilation operators
......................................................702
16.7.2.
One-electron operators
...........................................................................703
Contents xv
16.7.3.
Two-electron operators
..........................................................................704
16.7.4.
Energy expressions
................................................................................705
16.7.5.
The Fock space
......................................................................................706
16.8.
Diagrammatic Theory
.........................................................................................706
16.8.1.
Second- and third-order diagrammatic theory
......................................707
16.8.2.
Fourth-order diagrammatic theory
.........................................................708
16.8.3.
Padé approximants
and perturbation expansions
..................................710
16.8.4.
Coupled-cluster many-body perturbation theory
...................................711
16.8.5.
CC-RH-MBPT
......................................................................................712
16.9.
The Density Functional Theory
..........................................................................713
16.10.
Problems
16.........................................................................................................716
16.11.
Solved Problems
..................................................................................................717
CHAPTER
17
Atomic and molecular interactions
.........................................723
17.1.
Introduction
.........................................................................................................723
17.2.
Electric Properties of Molecules
.........................................................................724
17.2.1.
Molecular moments and polarizabilities
...............................................724
17.2.2.
Molecular moments
...............................................................................726
17.2.3.
Polarizabilities
........................................................................................727
17.3.
Interatomic Potentials
.........................................................................................731
17.3.1.
The H-H^ non-expanded interaction up to second order
.....................731
17.3.2.
The
H
-Н
non-expanded interaction up to second order
.......................735
17.3.3.
The multipole analysis of the
H
-Н
non-expanded second-order
induction energy
.....................................................................................737
17.3.4.
The multipole analysis of the
H
-Н
non-expanded second-order
dispersion energy
...................................................................................740
17.3.5.
The
H
-Н
expanded interaction up to second order
..............................742
17.3.6.
Higher-order terms in the
H
-Н
long-range dispersion interaction
.......746
17.3.7.
The expanded dispersion interaction for many-electron atoms
............748
17.4.
Molecular Interactions
........................................................................................752
17.4.1.
Non-expanded molecular energy corrections up to second order
........753
17.4.2.
Expanded molecular energy corrections up to second order
................756
17.4.3.
Multipole expansion of the first-order electrostatic energy
in(HF)2
..................................................................................................761
17.5.
The
Pauli
Repulsion between Closed Shells
......................................................765
17.6.
The Van
der Waals
Bond
....................................................................................767
17.7.
Accurate Theoretical Results for Simple Diatomic Systems
.............................772
17.8.
A Generalized Multipole Expansion for Molecular Interactions
.......................773
17.8.3.
Generalized expansion of the intermolecular potential
........................773
17.8.2.
Generalized molecular moments and polarizabilities
...........................776
17.8.3.
Molecular interaction energies
..............................................................777
17.8.4.
The damping of dispersion in the (HF>2 homodimer
............................778
17.9.
Problems
17.........................................................................................................779
17.10.
Solved Problems
..................................................................................................780
xvi Contents
CHAPTER
18 Evaluation
of molecular integrals
...........................................789
18.1.
Introduction
.........................................................................................................790
18.2.
The Basic Integrals
.............................................................................................790
18.2.1-
The indefinite integral
............................................................................790
18.2.2.
Definite integrals and auxiliary functions
.............................................791
18.3.
One-Centre Integrals
...........................................................................................793
18.3.1.
One-electron integrals
............................................................................793
18.3.2.
Two-electron integrals
...........................................................................795
18.4.
Evaluation of the Electrostatic Potential J s
.......................................................795
18.4.1.
Spherical coordinates
.............................................................................795
18.4.2.
Spheroidal coordinates
...........................................................................797
18.5.
The (Is2!Is2) Electron Repulsion Integral
..........................................................798
18.5.1.
Same orbital exponent
...........................................................................798
18.5.2.
Different orbital exponents
....................................................................799
18.6.
General Formula for One-centre Two-electron Integrals
...................................799
18.7.
Two-centre Integrals Over is STOs
....................................................................800
18.7.1.
One-electron integrals
............................................................................801
18.7.2.
Two-electron integrals
...........................................................................803
18.7.3.
Limiting values of two-centre integrals
................................................809
18.8.
On the General Formulae for Two-centre Integrals
...........................................812
18.8.1.
Spheroidal coordinates
...........................................................................812
18.8.2.
Spherical coordinates
.............................................................................813
18.9.
A Short Note on Multicentre Integrals
...............................................................814
18.9.1.
Three-centre one-electron integral over Is STOs
.................................814
18.9.2.
Four-centre two-electron integral over Is STOs
...................................815
18.10.
Molecular Integrals Over GTOs
.........................................................................817
18.10.1.
Some properties of Gaussian functions
...............................................817
18.10.2.
Integrals of Gaussian functions
...........................................................819
18.10.3.
Integral transforms
...............................................................................820
18.10.4.
Molecular integrals
..............................................................................822
18.11.
Problems
18.........................................................................................................824
18.12.
Solved Problems
..................................................................................................825
CHAPTER
19
Relativistic molecular quantum mechanics
.............................831
19.1.
Introduction
.........................................................................................................831
19.2.
The Schroedinger s Relativistic Equation
..........................................................832
19.3-
The Klein-Gordon Relativistic Equation
...........................................................833
19.4.
Dirac s Relativistic Equation for the Electron
...................................................834
19.5.
Spinors: Small and Large Components
..............................................................835
19.6.
Dirac s Equation for a Central Field
..................................................................838
19.6.1.
Separation of the radial equation
...........................................................841
19.6.2.
The hydrogen-like atom
.........................................................................843
19.7.
One-Electron Molecular Systems: H? and HHe+2
...........................................846
Contents xvii
19.8.
Two-Electron Atomic System: The He Atom
....................................................847
19.9.
Two-Electron Molecular Systems:
Њ
and HHe
..............................................850
19.10.
Many-Electron Atoms and Molecules
................................................................854
19.11.
Problems
19.........................................................................................................857
19.12.
Solved Problems
..................................................................................................858
CHAPTER
20
Molecular vibrations
..............................................................863
20.1.
Introduction
.........................................................................................................863
20.2.
Separation of Translational and Rotational Motions
.........................................863
20.3.
Normal Coordinates in Classical and Quantum Mechanics
..............................864
20.4.
The Born-Oppenheimer Approximation
............................................................867
20.5.
Electronically Degenerate States and the Renner s Effect in NH2
....................872
20.6.
The Jahn-Teller Effect in
СЩ
..........................................................................874
20.7.
The
Von Neu mann-
Wigner Non-crossing Rule in Diatomics
...........................878
20.8.
Conical Intersections in Polyatomic Molecules
.................................................878
20.9.
Problems
20.........................................................................................................883
20.10.
Solved Problems
..................................................................................................884
References
..........................................................................................................................................895
Author Index
......................................................................................................................................911
Subject Index
.....................................................................................................................................919
Second Edition
Elementary Molecular
Quantum
Mechanics
Mathematical Methods and Applications
Valerio Magnasco
The second edition of Elementary Molecular Quantum Mechanics explains the mathematical
background and applications of quantum mechanics to physics and chemical problems. This
readable book has a dual purpose: to teach the mathematics required to understand molecular
quantum mechanics and to examine the applications of the mathematics to understand
and predict molecules. This book greatly expands on the previous edition, presenting both
mathematical methods and also their application. Many examples and mathematical points
are given as problems at the end of each chapter, with a hint for their solution. Solutions are
then worked out in detail in the last section of each chapter.
Key Features
•
Clearly explains the mathematical background required to understand quantum
mechanics
•
Illustrates the applications of quantum mechanics to physics and chemical problems
•
Uses clear and simplified examples to demonstrate the methods of molecular
quantum mechanics
Dr.
Valerio
Magnasco, MRSC, is past Professor of Theoretical Chemistry at the Department of Chemistry and
Industrial Chemistry
(DCCI),
University of Genoa (Italy). He is the author of
180
international scientific papers
and three books on Molecular Quantum Mechanics.
ISBN
978-0-444-62647-9
siore-etsevier-com
9
l780 444ll6 2 6
|
any_adam_object | 1 |
author | Magnasco, Valerio |
author_facet | Magnasco, Valerio |
author_role | aut |
author_sort | Magnasco, Valerio |
author_variant | v m vm |
building | Verbundindex |
bvnumber | BV041281888 |
classification_rvk | UK 1200 VE 5650 |
classification_tum | CHE 020f CHE 150f |
ctrlnum | (OCoLC)862802930 (DE-599)BVBBV041281888 |
discipline | Chemie / Pharmazie Physik Chemie |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01890nam a2200421 c 4500</leader><controlfield tag="001">BV041281888</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140414 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130920s2013 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444626479</subfield><subfield code="9">978-0-444-62647-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)862802930</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041281888</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5650</subfield><subfield code="0">(DE-625)147118:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 020f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 150f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Magnasco, Valerio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elementary molecular quantum mechanics</subfield><subfield code="b">mathematical methods and applications</subfield><subfield code="c">Valerio Magnasco</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 932 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Aufl. u.d.T.: Magnasco, Valerio: Elementary methods of molecular quantum mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026255309&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026255309&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026255309</subfield></datafield></record></collection> |
id | DE-604.BV041281888 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:43:56Z |
institution | BVB |
isbn | 9780444626479 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026255309 |
oclc_num | 862802930 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-703 |
owner_facet | DE-91G DE-BY-TUM DE-703 |
physical | XX, 932 S. graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Elsevier |
record_format | marc |
spelling | Magnasco, Valerio Verfasser aut Elementary molecular quantum mechanics mathematical methods and applications Valerio Magnasco 2. ed. Amsterdam [u.a.] Elsevier 2013 XX, 932 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier 1. Aufl. u.d.T.: Magnasco, Valerio: Elementary methods of molecular quantum mechanics Quantenchemie (DE-588)4047979-1 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Quantenchemie (DE-588)4047979-1 s DE-604 Quantenmechanik (DE-588)4047989-4 s Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026255309&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026255309&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Magnasco, Valerio Elementary molecular quantum mechanics mathematical methods and applications Quantenchemie (DE-588)4047979-1 gnd Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4047979-1 (DE-588)4047989-4 |
title | Elementary molecular quantum mechanics mathematical methods and applications |
title_auth | Elementary molecular quantum mechanics mathematical methods and applications |
title_exact_search | Elementary molecular quantum mechanics mathematical methods and applications |
title_full | Elementary molecular quantum mechanics mathematical methods and applications Valerio Magnasco |
title_fullStr | Elementary molecular quantum mechanics mathematical methods and applications Valerio Magnasco |
title_full_unstemmed | Elementary molecular quantum mechanics mathematical methods and applications Valerio Magnasco |
title_short | Elementary molecular quantum mechanics |
title_sort | elementary molecular quantum mechanics mathematical methods and applications |
title_sub | mathematical methods and applications |
topic | Quantenchemie (DE-588)4047979-1 gnd Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Quantenchemie Quantenmechanik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026255309&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026255309&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT magnascovalerio elementarymolecularquantummechanicsmathematicalmethodsandapplications |