Microfluidics for medical applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Royal Soc. of Chemistry
2015
|
Schriftenreihe: | RSC nanoscience & nanotechnology
36 |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 303 S. zahlr. Ill., graph. Darst. |
ISBN: | 9781849736374 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV041268901 | ||
003 | DE-604 | ||
005 | 20141212 | ||
007 | t | ||
008 | 130912s2015 ad|| |||| 00||| eng d | ||
020 | |a 9781849736374 |c Hbk. |9 978-1-84973-637-4 | ||
035 | |a (OCoLC)898189667 | ||
035 | |a (DE-599)BVBBV041268901 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29 | ||
100 | 1 | |a van den Berg, Albert |e Verfasser |4 aut | |
245 | 1 | 0 | |a Microfluidics for medical applications |c ed. by Albert van den Berg ... |
264 | 1 | |a Cambridge |b Royal Soc. of Chemistry |c 2015 | |
300 | |a XVII, 303 S. |b zahlr. Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a RSC nanoscience & nanotechnology |v 36 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-84973-759-3 |
830 | 0 | |a RSC nanoscience & nanotechnology |v 36 |w (DE-604)BV035798085 |9 36 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026242545&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-026242545 |
Datensatz im Suchindex
_version_ | 1804150733619068928 |
---|---|
adam_text | Titel: Microfluidics for medical applications
Autor: Berg, Albert van den
Jahr: 2015
Contents
Chapter 1 Microtechnologies in the Fabrication of Fibers for Tissue
Engineering 1
Mohsen Akbari, Ali Tamayol, Nasim Annabi, David Juncker
and Ali Khademhosseini
1.1 Introduction 1
1.2 Fiber Formation Techniques 2
1.2.1 Co-axial Flow Systems 2
1.3 Wetspinning 7
1.4 Meltspinning (Extrusion) 10
1.5 Electrospinning 12
1.6 Conclusions 15
Acknowledgements 16
References 16
Chapter 2 Kidney on a Chip 19
Laura Ha, Kyung-Jin Jang and Kahp-Yang Suh
2.1 Introduction 19
2.2 Kidney Structure and Function 20
2.3 Mimicking Kidney Environment 22
2.3.1 Extracellular Matrix 22
2.3.2 Mechanical Stimulation 23
2.3.3 Various Kidney Cells 24
2.3.4 Extracellular Environment 27
2.4 Kidney on a Chip 28
2.4.1 Microfluidic Approach for Kidney on a Chip 28
2.4.2 Fabrication of Kidney on a Chip 28
2.4.3 Various Kidney Chips 30
RSC Nanoscience Nanotechnology No. 36
Microfluidics for Medical Applications
Edited by Albert van den Berg and Loes Segerink
© The Royal Society of Chemistry 2015
Published by the Royal Society of Chemistry, www.rsc.org
xi
xii
Contents
2.5 Future Opportunities and Challenges 33
References 35
Chapter 3 Blood-brain Barrier (BBB): An Overview of the Research of
the Blood-brain Barrier Using Microfluidic Devices 40
Andries D. van der Meer, Floor Wolbers, Istvän Vermes and
Albert van den Berg
3.1 Introduction 40
3.2 Blood-brain Barrier 41
3.2.1 Neurovascular Unit 41
3.2.2 Transport 41
3.2.3 Multidrug Resistance 42
3.2.4 Neurodegenerative Diseases - Loss of BBB
Function 43
3.3 Modeling the BBB in Vitro 44
3.3.1 Microfluidic in Vitro Models of the BBB:
the BBB-on-Chip 45
3.3.2 Cellular Engineering 47
3.3.3 Biochemical Engineering 48
3.3.4 Biophysical Engineering 50
3.4 Measurement Techniques 51
3.4.1 Transendothelial Electrical Resistance 51
3.4.2 Permeability 51
3.4.3 Fluorescence Microscopy 52
3.5 Conclusion and Future Prospects 52
Acknowledgements 53
References 53
Chapter 4 The Use of Microfluidic based Neuronal Cell Cultures to
Study Alzheimer s Disease 57
Robert Meissner and Philippe Renaud
4.1 Alzheimer s Disease - Increased Mortality Rates and
Still Incurable 57
4.2 Unknowns of Alzheimer s Disease 58
4.2.1 Molecular Key Players of AD 58
4.2.2 From Molecules to Neuronal Networks 59
4.3 Why Microsystems May Be a Key in Understanding
the Propagation of AD 61
4.3.1 Requirements for in Vitro Studies on AD
Progression 61
4.3.2 Establishing Ordered Neuronal Cultures with
Microfluidics 62
4.4 Micro-devices-based in Vitro Alzheimer Models 71
Contents xiii
4.4.1 First Microtechnology-based Experimental
Models 71
4.4.2 Requirements of Future Micro-device-based
Studies 74
4.5 Questions that May Be Addressed by
Micro-controlled Cultures 76
References 77
Chapter 5 Microbubbles for Medical Applications 81
Tim Segers, Nico de Jong, Detlef Lohse and Michel Versluis
5.1 Introduction 81
5.1.1 Microbubbles for Imaging 82
5.1.2 Microbubbles for Therapy 83
5.1.3 Microbubbles for Cleaning 84
5.2 Microbubble Basics 86
5.2.1 Microbubble Dynamics 86
5.3 Microbubble Stability 89
5.4 Microbubble Formation 91
5.5 Microbubble Modeling and Characterization 93
5.5.1 Optical Characterization 95
5.5.2 Sorting Techniques 95
5.5.3 Acoustical Characterization 95
5.6 Conclusions 97
Acknowledgements 98
References 98
Chapter 6 Magnetic Particle Actuation in Stationary Microfluidics
for Integrated Tab-on Chip Biosensors 102
Alexander van Reenen, Arthur M. de Jong,
Jaap M. J. den Toonder and Menno W J. Prins
6.1 Introduction 102
6.2 Capture of Analyte Using Magnetic Particles 105
6.2.1 The Analyte Capture Process 106
6.2.2 Analyte Capture Using Magnetic Particles in a
Static Fluid 108
6.3 Analyte Detection 112
6.3.1 Magnetic Particles as Carriers 112
6.3.2 Agglutination Assay with Magnetic Particles 115
6.3.3 Surface-binding Assay with Magnetic
Particles as Labels 117
6.3.4 Magnetic Stringency 120
6.4 Integration of Magnetic Actuation Processes 122
6.5 Conclusions 125
xiv
Contents
Acknowledgements 126
References 126
Chapter 7 Microfluidics for Assisted Reproductive Technologies 131
David Lai, Joyce Han-Ching Chiù, Gary D. Smith and
Shuichi Takayama
7.1 Introduction 131
7.2 Gamete Manipulations 132
7.2.1 Male Gamete Sorting 133
7.2.2 Female Gamete Quality Assessment 137
7.3 In Vitro Fertilization 139
7.4 Ciyopreservation 141
7.5 Embryo Culture 144
7.6 Embryo Analysis 146
7.7 Conclusion 148
References 148
Chapter 8 Microfluidic Diagnostics for Low-resource Settings:
Improving Global Health without a Power Cord 151
Joshua R. Buser, Carly A. Holstein and Paul Yager
8.1 Introduction: Need for Diagnostics in Low-resource
Settings 151
8.1.1 Importance of Diagnostic Testing 151
8.1.2 Limitations in Low-resource Settings 152
8.1.3 Scope of Chapter 152
8.2 Types of Diagnostic Testing Needed in Low-resource
Settings 153
8.2.1 Diagnosing Disease 153
8.2.2 Monitoring Disease 158
8.2.3 Counterfeit Drug Testing 161
8.2.4 Environmental Testing 162
8.3 Overview of Microfluidic Diagnostics for Use at the
Point of Care 162
8.3.1 Channel-based Microfluidics 163
8.3.2 Paper-based Microfluidics 164
8.4 Enabling All Aspects of Diagnostic Testing in
Low-resource Settings: Examples of and Opportunities
for Microfluidics (Channel-based and Paper-based) 171
8.4.1 Transportation and Storage of Devices in
Low-resource Settings 172
8.4.2 Specimen Collection 173
8.4.3 Sample Preparation 174
8.4.4 Running the Assay 176
Contents xv
8.4.5 Signal Read-out 179
8.4.6 Data Integration into Health Systems 180
8.4.7 Disposal 183
8.5 Conclusions 183
References 183
Chapter 9 Isolation and Characterization of Circulating Tumor
Cells 191
Yoonsun Yang and Leon W. M. M. Terstappen
9.1 Introduction 191
9.2 CTC Definition in CellSearch System 192
9.3 Clinical Relevance of CTCs 193
9.4 Identification of Treatment Targets on CTCs 195
9.5 Technologies for CTC Enumeration 196
9.6 Isolation and Identification of CTCs in Microfluidic
Devices 199
9.6.1 Microfluidic Devices for CTC Isolation Based
on Physical Properties 200
9.6.2 Microfluidic Devices to Isolate CTCs Based
on Immunological Properties 202
9.6.3 Microfluidic Devices to Isolate CTCs Based
on Physical as well as Immunological
Properties 204
9.6.4 Characterization of CTCs in Microfluidic
Devices 204
9.7 Summary and Outlook 205
References 207
Chapter 10 Microfluidic Impedance Cytometry for Blood Cell
Analysis 213
Hywel Morgan and Daniel Spencer
10.1 Introduction 213
10.2 The Full Blood Count 217
10.2.1 Clinical Diagnosis and the Full Blood Count 217
10.2.2 Commercial FBC Devices 219
10.3 Microfluidic Impedance Cytometry (MIC) 220
10.3.1 Measurement Principle 221
10.3.2 Behavior of Cells in AC fields 222
10.3.3 Sizing Particles 225
10.3.4 Cell Membrane Capacitance Measurements 226
10.3.5 Microfluidic FBC Chip 227
10.3.6 Accuracy and Resolution 229
10.3.7 Antibody Detection 232
xvi
Contents
10.4 Further Applications of MIC 234
10.4.1 Cell Counting and Viability 234
10.4.2 Parasitized Cells 235
10.4.3 Tumor Cells and Stem Cell Morphology 235
10.4.4 High-frequency Measurements 237
10.5 Future Challenges 238
References 238
Chapter 11 Routine Clinical Laboratory Diagnostics Using Point of
Care or Lab on a Chip Technology 242
Gàbor L. Kovâcs and Istvân Vermes
11.1 Introduction 242
11.2 Point-of-care Testing 243
11.2.1 Categorization of POCT Devices 243
11.2.2 Role of POCT in Laboratory Medicine 244
11.3 Glucometers 245
11.3.1 The WHO and ADA Criteria of Diabetes 245
11.3.2 Plasma Glucose or Blood Glucose 245
11.3.3 Glucometers in Medical Practice 246
11.3.4 Glucometers in Gestational Diabetes 248
11.3.5 Continuous Glucose Monitoring 249
11.4 i-STAT: a Multi-parameter Unit-use POCT
Instrument 249
11.4.1 Clinical Chemistry 250
11.4.2 Cardiac Markers 253
11.4.3 Hematology 253
11.4.4 Clinical Use and Performance 254
11.5 Conclusions 256
References 257
Chapter 12 Medimate Minilab, a Microchip Capillary Electrophoresis
Self-test Platform 259
Steven S. Staal, Mathijn C. Ungerer, Kris L. L. Movig,
Jody A. Bartholomew, Hans Krabbe and Jan C. T. Eijkel
12.1 Introduction 259
12.2 Microfluidic Capillary Electrophoresis as a Self-test
Platform 261
12.2.1 Conducting a Measurement 261
12.2.2 Measurement Process 262
12.2.3 From Research Technology to Self-test
Platform 264
12.3 A Lithium Self-test for Patients with Manic
Depressive Illness 267
Contents xvii
12.4 Validation Method 269
12.4.1 Applied Guidelines 269
12.4.2 Acceptance Criteria 270
12.4.3 Sample Availability, Preparation, and other
Considerations 272
12.5 Validation Results 273
12.5.1 Reproducibility 273
12.5.2 Linearity 274
12.5.3 Method Comparison 276
12.5.4 Home Test 277
12.5.5 Other Study Results 280
12.5.6 Final Evaluation 282
12.6 Platform Potential 282
12.6.1 Current Platform Capabilities 282
12.6.2 Future Possibilities and Limitations 286
12.7 Conclusions 286
Acknowledgements 287
References 287
Subject Index
289
|
any_adam_object | 1 |
author | van den Berg, Albert |
author_facet | van den Berg, Albert |
author_role | aut |
author_sort | van den Berg, Albert |
author_variant | d b a v dba dbav |
building | Verbundindex |
bvnumber | BV041268901 |
ctrlnum | (OCoLC)898189667 (DE-599)BVBBV041268901 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01213nam a2200301 cb4500</leader><controlfield tag="001">BV041268901</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141212 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130912s2015 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781849736374</subfield><subfield code="c">Hbk.</subfield><subfield code="9">978-1-84973-637-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)898189667</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041268901</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">van den Berg, Albert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microfluidics for medical applications</subfield><subfield code="c">ed. by Albert van den Berg ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Royal Soc. of Chemistry</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 303 S.</subfield><subfield code="b">zahlr. Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">RSC nanoscience & nanotechnology</subfield><subfield code="v">36</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-84973-759-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">RSC nanoscience & nanotechnology</subfield><subfield code="v">36</subfield><subfield code="w">(DE-604)BV035798085</subfield><subfield code="9">36</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026242545&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026242545</subfield></datafield></record></collection> |
id | DE-604.BV041268901 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:43:37Z |
institution | BVB |
isbn | 9781849736374 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026242545 |
oclc_num | 898189667 |
open_access_boolean | |
owner | DE-29 |
owner_facet | DE-29 |
physical | XVII, 303 S. zahlr. Ill., graph. Darst. |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Royal Soc. of Chemistry |
record_format | marc |
series | RSC nanoscience & nanotechnology |
series2 | RSC nanoscience & nanotechnology |
spelling | van den Berg, Albert Verfasser aut Microfluidics for medical applications ed. by Albert van den Berg ... Cambridge Royal Soc. of Chemistry 2015 XVII, 303 S. zahlr. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier RSC nanoscience & nanotechnology 36 Erscheint auch als Online-Ausgabe 978-1-84973-759-3 RSC nanoscience & nanotechnology 36 (DE-604)BV035798085 36 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026242545&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | van den Berg, Albert Microfluidics for medical applications RSC nanoscience & nanotechnology |
title | Microfluidics for medical applications |
title_auth | Microfluidics for medical applications |
title_exact_search | Microfluidics for medical applications |
title_full | Microfluidics for medical applications ed. by Albert van den Berg ... |
title_fullStr | Microfluidics for medical applications ed. by Albert van den Berg ... |
title_full_unstemmed | Microfluidics for medical applications ed. by Albert van den Berg ... |
title_short | Microfluidics for medical applications |
title_sort | microfluidics for medical applications |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026242545&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035798085 |
work_keys_str_mv | AT vandenbergalbert microfluidicsformedicalapplications |