An introduction to continuum mechanics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2013
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XXVI, 450 S. graph. Darst. |
ISBN: | 9781107025431 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041215794 | ||
003 | DE-604 | ||
005 | 20140416 | ||
007 | t | ||
008 | 130812s2013 d||| |||| 00||| eng d | ||
010 | |a 2013002793 | ||
020 | |a 9781107025431 |c hardback |9 978-1-107-02543-1 | ||
035 | |a (OCoLC)864304875 | ||
035 | |a (DE-599)GBV739310364 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-19 |a DE-11 |a DE-29T | ||
082 | 0 | |a 531 | |
084 | |a UF 2000 |0 (DE-625)145568: |2 rvk | ||
100 | 1 | |a Reddy, Junuthula Narasimha |d 1945- |e Verfasser |0 (DE-588)108393232 |4 aut | |
245 | 1 | 0 | |a An introduction to continuum mechanics |c J. N. Reddy |
250 | |a 2. ed. | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2013 | |
300 | |a XXVI, 450 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 0 | 7 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026190432&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026190432&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-026190432 |
Datensatz im Suchindex
_version_ | 1804150650202750976 |
---|---|
adam_text | Contents
List of Symbols
........................xvii
Preface to the Second Edition
................. xxiii
Preface to the First Edition
..................xxv
About the Author
......................xxvii
1
INTRODUCTION
......................1
1.1
Continuum Mechanics
.................... 1
1.2
A Look Forward
....................... 4
1.3
Summary
.......................... 5
Problems
.......................... 6
2
VECTORS AND TENSORS
.................9
2.1
Background and Overview
................... 9
2.2
Vector Algebra
........................10
2.2.1
Definition of a Vector
.................. 10
2.2.1.1
Vector addition
................... 11
2.2.1.2
Multiplication of a vector by a scalar
.......... 11
2.2.1.3
Linear independence of vectors
............. 11
2.2.2
Scalar and Vector Products
............... 12
2.2.2.1
Scalar product
.................... 12
2.2.2.2
Vector product
.................... 13
2.2.2.3
Triple products of vectors
............... 16
2.2.3
Plane Area as a Vector
................. 17
2.2.4
Reciprocal Basis
.................... 19
2.2.4.1
Components of a vector
................ 19
2.2.4.2
General basis
.................... 19
2.2.4.3
Orthonormal
basis
.................. 21
2.2.4.4
The Gram-Schmidt orthonormalization
......... 22
2.2.5
Summation Convention
................. 23
2.2.5.1
Dummy index
.................... 24
2.2.5.2
Free index
...................... 24
2.2.5.3 Kronecker
delta
.................... 25
2.2.5.4
Permutation symbol
.................. 25
2.2.6
Transformation Law for Different Bases
.......... 28
2.2.6.1
General transformation laws
..............28
2.2.6.2
Transformation laws for
orthonormal
systems
......29
CONTENTS
2.3
Theory of Matrices
......................31
2.3.1
Definition
....................... 31
2.3.2
Matrix Addition and Multiplication of a Matrix by a Scalar
. 32
2.3.3
Matrix Transpose
.................... 33
2.3.4
Symmetric and Skew Symmetric Matrices
......... 33
2.3.5
Matrix Multiplication
.................. 34
2.3.6
Inverse and Determinant of a Matrix
........... 36
2.3.7
Positive-Definite and Orthogonal Matrices
......... 39
2.4
Vector Calculus
........................40
2.4.1
Differentiation of a Vector with Respect to a Scalar
..... 40
2.4.2
Curvilinear Coordinates
................. 42
2.4.3
The Fundamental Metric
................. 43
2.4.4
Derivative of a Scalar Function of a Vector
......... 44
2.4.5
The Del Operator
.................... 45
2.4.6
Divergence and Curl of a Vector
............. 47
2.4.7
Cylindrical and Spherical Coordinate Systems
....... 51
2.4.8
Gradient, Divergence, and Curl Theorems
......... 52
2.5
Tensors
...........................53
2.5.1
Dyads and Dyadics
................... 53
2.5.2
Nonion Form of a Second-Order Tensor
.......... 54
2.5.3
Transformation of Components of a Tensor
......... 57
2.5.4
Higher-Order Tensors
.................. 58
2.5.5
Tensor Calculus
..................... 59
2.5.6
Eigenvalues and Eigenvectors
.............. 62
2.5.6.1
Eigenvalue problem
.................. 62
2.5.6.2
Eigenvalues and eigenvectors of a real symmetric tensor
. . 62
2.5.6.3
Spectral theorem
................... 64
2.5.6.4
Calculation of eigenvalues and eigenvectors
....... 64
2.6
Summary
..........................72
Problems
..........................73
3
KINEMATICS OF
CONTINUA
..............81
3.1
Introduction
.........................81
CONTENTS
ix
3.2
Descriptions of Motion
.....................82
3.2.1
Configurations of a Continuous Medium
.......... 82
3.2.2
Material Description
.................. 83
3.2.3
Spatial Description
................... 85
3.2.4
Displacement Field
................... 88
3.3
Analysis of Deformation
....................89
3.3.1
Deformation Gradient
.................. 89
3.3.2
Isochoric, Homogeneous, and Inhomogeneous Deformations
. . 93
3.3.2.1
Isochoric deformation
................. 93
3.3.2.2
Homogeneous deformation
............... 93
3.3.2.3
Nonhomogeneous deformation
............. 95
3.3.3
Change of Volume and Surface
.............. 96
3.3.3.1
Volume change
....................96
3.3.3.2
Area change
.....................97
3.4
Strain Measures
.......................98
3.4.1
Cauchy-Green Deformation Tensors
............ 98
3.4.2
Green-Lagrange Strain Tensor
.............. 100
3.4.3
Physical Interpretation of Green-Lagrange Strain Components
101
3.4.4
Cauchy and
Euler
Strain Tensors
............. 103
3.4.5
Transformation of Strain Components
........... 106
3.4.6
Invariants and Principal Values of Strains
......... 109
3.5
Infinitesimal Strain Tensor and Rotation Tensor
........
Ill
3.5.1
Infinitesimal Strain Tensor
................
Ill
3.5.2
Physical Interpretation of Infinitesimal Strain
Tensor Components
...................112
3.5.3
Infinitesimal Rotation Tensor
...............114
3.5.4
Infinitesimal Strains in Cylindrical and Spherical
Coordinate Systems
...................116
3.5.4.1
Cylindrical coordinate system
............117
3.5.4.2
Spherical coordinate system
.............117
3.6
Velocity Gradient and Vorticity Tensors
............ 118
3.6.1
Definitions
.......................118
3.6.2
Relationship Between
D
and
Ě
..............119
χ
CONTENTS
3.7
Compatibility Equations
................... 120
3.7.1
Preliminary Comments
................. 120
3.7.2
Infinitesimal Strains
................... 121
3.7.3
Finite Strains
...................... 125
3.8
Rigid-Body Motions and Material Objectivity
......... 125
3.8.1
Superposed Rigid-Body Motions
............. 125
3.8.1.1
Introduction and rigid-body transformation
...... 125
3.8.1.2
Effect on
F
.................... 128
3.8.1.3
Effect on
С
and
E
................. 128
3.8.1.4
Effect on
L
and
D
................. 129
3.8.2
Material Objectivity
................... 129
3.8.2.1
Observer transformation
.............. 129
3.8.2.2
Objectivity of various kinematic measures
....... 130
3.8.2.3
Time rate of change in a rotating frame of reference
. . 131
3.9
Polar Decomposition Theorem
................ 132
3.9.1
Preliminary Comments
................. 132
3.9.2
Rotation and Stretch Tensors
............... 132
3.9.3
Objectivity of Stretch Tensors
.............. 138
3.10
Summary
......................... 139
Problems
......................... 140
4
STRESS MEASURES
.................. 151
4.1
Introduction
........................ 151
4.2
Cauchy Stress Tensor and Cauchy s Formula
.......... 151
4.2.1
Stress Vector
...................... 151
4.2.2
Cauchy s Formula
................... 152
4.2.3
Cauchy Stress Tensor
.................. 153
4.3
Transformation of Stress Components and Principal Stresses
... 157
4.3.1
Transformation of Stress Components
........... 157
4.3.1.1
Invariants
..................... 157
4.3.1.2
Transformation equations
.............. 157
4.3.2
Principal Stresses and Principal Planes
.......... 160
4.3.3
Maximum Shear Stress
................. 162
CONTENTS xi
4.4
Other Stress Measures
.................... 164
4.4.1
Preliminary Comments
................. 164
4.4.2
First Piola-Kirchhoff Stress Tensor
............ 164
4.4.3
Second Piola-Kirchhoff Stress Tensor
........... 165
4.5
Equilibrium Equations for Small Deformations
......... 169
4.6
Objectivity of Stress Tensors
................. 171
4.6.1
Cauchy Stress Tensor
.................. 171
4.6.2
First Piola-Kirchhoff Stress Tensor
............ 172
4.6.3
Second Piola-Kirchhoff Stress Tensor
........... 172
4.7
Summary
......................... 172
Problems
......................... 173
5
CONSERVATION AND BALANCE LAWS
........ 181
5.1
Introduction
........................ 181
5.2
Conservation of Mass
.................... 182
5.2.1
Preliminary Discussion
................. 182
5.2.2
Material Time Derivative
................ 182
5.2.3
Vector and Integral Identities
............... 184
5.2.3.1
Vector identities
.................. 184
5.2.3.2
Integral identities
................. 185
5.2.4
Continuity Equation in the Spatial Description
....... 185
5.2.5
Continuity Equation in the Material Description
...... 191
5.2.6
Reynolds Transport Theorem
............... 193
5.3
Balance of Linear and Angular Momentum
........... 193
5.3.1
Principle of Balance of Linear Momentum
......... 193
5.3.1.1
Equations of motion in the spatial description
..... 197
5.3.1.2
Equations of motion in the material description
.... 199
5.3.2
Spatial Equations of Motion in Cylindrical and
Spherical Coordinates
.................. 201
5.3.2.1
Cylindrical coordinates
............... 202
5.3.2.2
Spherical coordinates
................ 202
5.3.3
Principle of Balance of Angular Momentum
........ 203
5.3.3.1 Monopolar
case
.................. 203
5.3.3.2
Multipolar
case
.................. 205
XU CONTENTS
5.4 Thermodynamic
Principles..................
206
5.4.1
Introduction
...................... 206
5.4.2 Balance
of
Energy................... 207
5.4.2.1 Energy
equation in the spatial description
....... 207
5.4.2.2
Energy equation in the material description
...... 209
5.4.3
Entropy Inequality
................... 210
5.4.3.1
Homogeneous processes
............... 210
5.4.3.2
Inhomogeneous processes
.............. 210
5.5
Summary
......................... 212
5.5.1
Preliminary Comments
................. 212
5.5.2
Conservation and Balance Equations in
the Spatial Description
................. 212
5.5.3
Conservation and Balance Equations in
the Material Description
................. 213
5.5.4
Closing Comments
................... 213
Problems
......................... 214
6
CONSTITUTIVE EQUATIONS
.............. 221
6.1
Introduction
........................ 221
6.1.1
General Comments
................... 221
6.1.2
General Principles of Constitutive Theory
......... 222
6.1.3
Material Frame Indifference
............... 223
6.1.4
Restrictions Placed by the Entropy Inequality
....... 224
6.2
Elastic Materials
...................... 225
6.2.1
Cauchy-Elastic Materials
................. 225
6-2.2
Green-Elastic or Hyperelastic Materials
.......... 226
6.2.3
Linearized Hyperelastic Materials: Infinitesimal Strains
. . . 227
6.3
Hookean Solids
...................... 228
6.3.1
Generalized Hooke s Law
................ 228
6.3.2
Material Symmetry Planes
................ 230
6.3.3
Monoclinic Materials
.................. 232
6.3.4
Orthotropic Materials
.................. 233
6.3.5 Isotropie
Materials
................... 237
6.4
Nonlinear Elastic Constitutive Relations
............ 241
•
m
ψ
CONTENTS
хні
6.5
Newtonian Fluids
...................... 242
6.5.1
Introduction
...................... 242
6.5.2
Ideal Fluids
...................... 243
6.5.3
Viscous Incompressible Fluids
.............. 244
6.6
Generalized Newtonian Fluids
................ 245
6.6.1
Introduction
...................... 245
6.6.2
Inelastic Fluids
.................... 245
6.6.2.1
Power-law model
.................. 246
6.6.2.2
Carreau
model
................... 246
6.6.2.3
Bingham model
.................. 247
6.6.3
Viscoelastic Constitutive Models
............. 247
6.6.3.1
Differential models
................. 247
6.6.3.2
Integral models
.................. 250
6.7
Heat Transfer
....................... 251
6.7.1
Introduction
...................... 251
6.7.2
Fourier s Heat Conduction Law
.............. 251
6.7.3
Newton s Law of Cooling
................ 252
6.7.4
Stefan-Boltzmann Law
................. 252
6.8
Constitutive Relations for Coupled Problems
.......... 252
6.8.1
Electromagnetics
.................... 252
6.8.1.1
Maxwell s equations
................ 253
6.8.1.2
Constitutive relations
................ 253
6.8.2
Thermoelasticity
.................... 255
6.8.3
Hygrothermal elasticity
................. 255
6.8.4
Electroelasticity
.................... 256
6.9
Summary
......................... 258
Problems
......................... 259
7
LINEARIZED ELASTICITY
............... 265
7Л
Introduction
........................ 265
7.2
Governing Equations
.................... 265
7.2.1
Preliminary Comments
................. 266
7.2.2
Summary of Equations
................. 266
Xiv CONTENTS
7.2.2.1 Strain-displacement
equations............
266
7.2.2.2
Equations of motion
................ 267
7.2.2.3
Constitutive equations
............... 268
7.2.2.4
Boundary conditions
................ 269
7.2.2.5
Compatibility conditions
.............. 269
7.2.3
The
Navier
Equations
.................. 269
7.2.4
The Beltrami-Michell Equations
............. 270
7.3
Solution Methods
...................... 271
7.3.1
Types of Problems
................... 271
7.3.2
Types of Solution Methods
................ 272
7.3.3
Examples of the Semi-Inverse Method
........... 273
7.3.4
Stretching and Bending of Beams
............. 278
7.3.5
Superposition Principle
................. 283
7.3-6
Uniqueness of Solutions
................. 284
7.4
Clapeyron s, Betti s, and Maxwell s Theorems
......... 285
7.4.1
Clapeyron s Theorem
.................. 285
7.4.2
Betti s Reciprocity Theorem
............... 288
7.4.3
Maxwell s Reciprocity Theorem
.............. 291
7.5
Solution of Two-Dimensional Problems
............ 293
7.5.1
Introduction
...................... 293
7.5.2
Plane Strain Problems
................. 294
7.5.3
Plane Stress Problems
................. 297
7.5.4
Unification of Plane Stress and Plane Strain Problems
. . . 300
7.5.5
Airy Stress Function
.................. 301
7.5.6
Saint-Venant s Principle
................. 303
7.5.7
Torsion of Cylindrical Members
.............. 308
7.5.7.1
Warping function
.................. 309
7.5.7.2
Prandtl s stress function
.............. 311
7.6
Methods Based on Total Potential Energy
........... 314
7.6.1
Introduction
...................... 314
7.6.2
The Variational Operator
................ 314
7.6.3
The Principle of the Minimum Total Potential Energy
.... 316
7.6.3.1
Construction of the total potential energy functional
. . 316
7.6.3.2
Euler s equations and natural boundary conditions
- . . 317
7.6.3.3
Minimum property of the total potential energy functional
319
CONTENTS
XV
7.6.4 Castigliano s Theorem
I
................. 322
7.6.5 The Ritz
Method
.................... 326
7.6.5.1
The variational problem
............... 326
7.6.5.2
Description of the method
.............. 328
7.7
Hamilton s Principle
..................... 334
7.7.1
Introduction
...................... 334
7.7.2
Hamilton s Principle for a Rigid Body
........... 334
7.7.3
Hamilton s Principle for a Continuum
........... 338
7.8
Summary
......................... 341
Problems
......................... 342
8
FLUID MECHANICS AND HEAT TRANSFER
..... 355
8.1
Governing Equations
.................... 355
8.1.1
Preliminary Comments
................. 355
8.1.2
Summary of Equations
................. 356
8.2
Fluid Mechanics Problems
.................. 357
8.2.1
Governing Equations of Viscous Fluids
.......... 357
8.2.2
Inviscid Fluid Statics
.................. 360
8.2.3
Parallel Flow (Navier-Stokes Equations)
.......... 362
8.2.4
Problems with Negligible Convective Terms
........ 367
8.2.5
Energy Equation for One-Dimensional Flows
........ 370
8.3
Heat Transfer Problems
................... 373
8.3.1
Governing Equations
.................. 373
8.3.2
Heat Conduction in a Cooling Fin
............. 374
8.3.3
Axisymmetric Heat Conduction in a Circular Cylinder
.... 376
8.3.4
Two-Dimensional Heat Transfer
............. 379
8.3.5
Coupled Fluid Flow and Heat Transfer
.......... 381
8.4
Summary
......................... 382
Problems
......................... 382
9
LINEARIZED VISCOELASTICITY
........... 389
9.1
Introduction
........................ 389
9.1.1
Preliminary Comments
................. 389
xvi CONTENTS
9.1.2 Initial
Value
Problem,
the Unit
Impulse,
and the Unit Step
Function
........................ 390
9.1.3
The Laplace Transform Method
.............. 392
9.2
Spring and Dashpot Models
................. 396
9.2.1
Creep Compliance and Relaxation Modulus
........ 396
9.2.2
Maxwell Element
.................... 397
9.2.2.1
Creep response
................... 397
9.2.2.2
Relaxation response
................ 398
9.2.3
Kelvin-
Voigt
Element
.................. 400
9.2.3.1
Creep response
................... 400
9.2.3.2
Relaxation response
................ 401
9.2.4
Three-Element Models
.................. 402
9.2.5
Four-Element Models
.................. 404
9.3
Integral Constitutive Equations
................ 407
9.3.1
Hereditary Integrals
................... 407
9.3.2
Hereditary Integrals for Deviatoric Components
....... 410
9.3.3
The Correspondence Principle
.............. 412
9.3.4
Elastic and Viscoelastic Analogies
............. 414
9.4
Summary
......................... 420
Problems
......................... 420
References for Additional Reading
............. 425
Answers to Selected Problems
................ 429
Index
............................ 441
An Introduction to Continuum Mechanics, Second Edition
This best-selling textbook presents the concepts of continuum mechanics in a simple yet
rigorous manner. The book introduces the invariant form as well as the component form
of the basic equations and their applications to problems in elasticity, fluid mechanics,
and heat transfer and offers a brief introduction to linear viscoelasticity. The book is
ideal for advanced undergraduates and beginning graduate students looking to gain a
strong background in the basic principles common to all major engineering fields and for
those who will pursue further work in fluid dynamics, elasticity, plates and shells, vis¬
coelasticity, plasticity, and interdisciplinary areas such as geomechanics, biomechanics,
mechanobiology, and nanoscience. The book features derivations of the basic equations
of mechanics in invariant (vector and tensor) form and specification of the governing
equations to various coordinate systems, and numerous illustrative examples, chapter
summaries, and exercise problems. This second edition includes additional explanations,
examples, and problems.
J.
N.
Reddy is a University Distinguished Professor, Regents Professor, and Oscar S.
Wyatt Endowed Chair in the Department of Mechanical Engineering at Texas A&M
University. Dr. Reddy is internationally known for his contributions to theoretical and
applied mechanics and computational mechanics. He is the author of more than
450
journal papers and
17
books. Dr. Reddy is the recipient of numerous awards, including
the Walter L. Huber Civil Engineering Research Prize of the American Society of Civil
Engineers, the Worcester Reed Warner Medal and the Charles
Russ
Richards Memo¬
rial Award of the American Society of Mechanical Engineers, the
1997
Archie Higdon
Distinguished Educator Awrard from the American Society of Engineering Education,
the
1998
Nathan M. Newmark Medal from the American Society of Civil Engineers,
the
2000
Excellence in the Field of Composites from the American Society of Com¬
posites, the
2003
Bush Excellence Award for Faculty in International Research from
Texas A&:M University, and the
2003
Computational Solid Mechanics Award from the
U.S. Association of Computational Mechanics. Dr. Reddy received an Honoris Causa
from the Technical University of Lisbon, Portugal, in
2009
and an honorary degree from
Odlar
Yurdu University. Baku. Azerbaijan, in
2011.
Dr. Reddy is a Fellow of AIAA,
ASCE. ASME.
American Academy of Mechanics, the American Society of Compos¬
ites, the U.S. Association of Computational Mechanics, the International Association
of Computational Mechanics, and the Aeronautical Society of India. Dr. Reddy is the
Editor-in-Chief of Mechanics of Advanced
Matenals
and Structures, International Jour¬
nal of Computational Methods in Engineering Science and Mechanics, and International
Journal of Structural Stability and Dynamics. He also serves on the editorial boards of
more than two dozen other journals, including International Journal for Numerical
Methods
m
Engineering,
Computer Methods in Applied Mechanics and Engineering,
and International Journal of Non-Linear Mechanics. Dr. Reddy is one of the selec¬
tive researchers in engineering around the world who is recognized by
ISI
Highly Cited
Researchers with 10,000-plus citations with an
Н
-index
of more than
50.
|
any_adam_object | 1 |
author | Reddy, Junuthula Narasimha 1945- |
author_GND | (DE-588)108393232 |
author_facet | Reddy, Junuthula Narasimha 1945- |
author_role | aut |
author_sort | Reddy, Junuthula Narasimha 1945- |
author_variant | j n r jn jnr |
building | Verbundindex |
bvnumber | BV041215794 |
classification_rvk | UF 2000 |
ctrlnum | (OCoLC)864304875 (DE-599)GBV739310364 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01742nam a2200385 c 4500</leader><controlfield tag="001">BV041215794</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140416 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130812s2013 d||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2013002793</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107025431</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-107-02543-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864304875</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV739310364</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 2000</subfield><subfield code="0">(DE-625)145568:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reddy, Junuthula Narasimha</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108393232</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to continuum mechanics</subfield><subfield code="c">J. N. Reddy</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 450 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026190432&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026190432&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026190432</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV041215794 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:42:17Z |
institution | BVB |
isbn | 9781107025431 |
language | English |
lccn | 2013002793 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026190432 |
oclc_num | 864304875 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM DE-11 DE-29T |
owner_facet | DE-703 DE-19 DE-BY-UBM DE-11 DE-29T |
physical | XXVI, 450 S. graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Reddy, Junuthula Narasimha 1945- Verfasser (DE-588)108393232 aut An introduction to continuum mechanics J. N. Reddy 2. ed. Cambridge Cambridge University Press 2013 XXVI, 450 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Kontinuumsmechanik (DE-588)4032296-8 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Kontinuumsmechanik (DE-588)4032296-8 s DE-604 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026190432&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026190432&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Reddy, Junuthula Narasimha 1945- An introduction to continuum mechanics Kontinuumsmechanik (DE-588)4032296-8 gnd |
subject_GND | (DE-588)4032296-8 (DE-588)4151278-9 |
title | An introduction to continuum mechanics |
title_auth | An introduction to continuum mechanics |
title_exact_search | An introduction to continuum mechanics |
title_full | An introduction to continuum mechanics J. N. Reddy |
title_fullStr | An introduction to continuum mechanics J. N. Reddy |
title_full_unstemmed | An introduction to continuum mechanics J. N. Reddy |
title_short | An introduction to continuum mechanics |
title_sort | an introduction to continuum mechanics |
topic | Kontinuumsmechanik (DE-588)4032296-8 gnd |
topic_facet | Kontinuumsmechanik Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026190432&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026190432&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT reddyjunuthulanarasimha anintroductiontocontinuummechanics |