Nanostructured subwavelength waveguides: fundamentals and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester
Wiley
2012
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Wiley series in materials for electronic & optoelectronic applications
|
Schlagworte: | |
Online-Zugang: | Cover Cover Inhaltsverzeichnis Klappentext |
Beschreibung: | XII, 318 S. graph. Darst. |
ISBN: | 9781119974512 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041184084 | ||
003 | DE-604 | ||
005 | 20150225 | ||
007 | t | ||
008 | 130724s2012 d||| |||| 00||| eng d | ||
016 | 7 | |a 696945991 |2 DE-101 | |
020 | |a 9781119974512 |9 978-1-119-97451-2 | ||
035 | |a (OCoLC)812410161 | ||
035 | |a (DE-599)GBV696945991 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-703 |a DE-11 | ||
082 | 0 | |a 621.3815/2 | |
084 | |a UH 3000 |0 (DE-625)145643: |2 rvk | ||
084 | |a UH 5760 |0 (DE-625)145707: |2 rvk | ||
084 | |a ZN 6285 |0 (DE-625)157543: |2 rvk | ||
100 | 1 | |a Skorobogatiy, Maksim |d 1974- |e Verfasser |0 (DE-588)137805853 |4 aut | |
245 | 1 | 0 | |a Nanostructured subwavelength waveguides |b fundamentals and applications |c Maksim Skorobogatiy |
250 | |a 1. publ. | ||
264 | 1 | |a Chichester |b Wiley |c 2012 | |
300 | |a XII, 318 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Wiley series in materials for electronic & optoelectronic applications | |
650 | 0 | 7 | |a Lichtwellenleiter |0 (DE-588)4267405-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lichtwellenleiter |0 (DE-588)4267405-0 |D s |
689 | 0 | 1 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |u http://catalogimages.wiley.com/images/db/jimages/9781119974512.jpg |3 Cover |
856 | 4 | 2 | |m V:DE-576;X:wiley |q image/jpeg |u http://swbplus.bsz-bw.de/bsz369943473cov.htm |3 Cover |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026159298&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026159298&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-026159298 |
Datensatz im Suchindex
_version_ | 1804150601773219840 |
---|---|
adam_text | Contents
Series
Preface
xiii
Preface
xv
1
Introduction I
1.1
Contents and Organisation of the Book
2
1.2
Step-Index Subwavelength Waveguides Made of
Isotropie
Materials
3
1.3
Field Enhancement in the Low Refractive Index
Discontinuity Waveguides
5
1.4
Porous Waveguides and Fibres
6
1.5
Multifilament Core Fibres
7
1.6
Nanostructured Waveguides and Effective Medium Approximation
8
1.7
Waveguides Made of
Anisotropie
Materials
9
1.8
Metals and Polar Materials
10
1.9
Surface Polariton Waves on Planar and Curved Interfaces
12
1.9.1
Surface Waves on Planar Interfaces
12
1.9.2
Surface Waves on Wires
14
1.9.3
Plasmons Guided by Metal Slab Waveguides
16
1.9.4
Plasmons Guided by Metal Slot Waveguides
16
1.10
Metal/Dielectric Metamaterials and Waveguides Made of Them
16
1.11
Extending Effective Medium Approximation to Shorter Wavelengths
18
2
Hamiltonian Formulation of Maxwell Equations for the
Modes of
Anisotropie
Waveguides
21
2.1
Eigenstates of a Waveguide in Hamiltonian Formulation
21
2.2
Orthogonality Relation between the Modes of a Waveguide Made of
Lossless Dielectrics
23
2.3
Expressions for the Modal Phase Velocity
26
2.4
Expressions for the Modal Group Velocity
27
2.5
Orthogonality Relation between the Modes of a Waveguide Made of
Lossy Dielectrics
29
2.6
Excitation of the Waveguide Modes
30
2.6.1
Least Squares Method
32
2.6.2
Using Flux Operator as an Orthogonal Dot Product
33
2.6.3
Coupling into a Waveguide with Lossless Dielectric Profile
33
2.6.4
Coupling into a Waveguide with Lossy Dielectric Profile
36
viii CONTENTS
3
Wave Propagation in Planar
Anisotropie
Multilayers, Transfer
Matrix Formulation
39
3.1
Planewave
Solution for Uniform
Anisotropie
Dielectrics
39
3.2
Transfer Matrix Technique for Multilayers Made from Uniform
Anisotropie
Dielectrics
41
3.2.1
ТЕ
Multilayer Stack
41
3.2.2
TM Multilayer Stack
43
3.3
Reflections at the Interface between
Isotropie
and
Anisotropie
Dielectrics
44
4
Slab Waveguides Made from
Isotropie
Dielectric Materials. Example of
Subwavelength Planar Waveguides
47
4.1
Finding Modes of a Slab Waveguide Using Transfer Matrix Theory
47
4.2
Exact Solution for the Dispersion Relation of Modes of a Slab Waveguide
50
4.3
Fundamental Mode Dispersion Relation in the Long-Wavelength Limit
53
4.4
Fundamental Mode Dispersion Relation in the Short-Wavelength Limit
55
4.5
Waveguides with Low Refractive-Index Contrast
57
4.6
Single-Mode Guidance Criterion
57
4.7
Dispersion Relations of the Higher-Order Modes in the Vicinity of their
Cutoff Frequencies
57
4.8
Modal Losses Due to Material Absorption
58
4.8.1
Waveguides Featuring Low Loss-Dispersion
61
4.8.2
Modal Losses in a Waveguide with Lossless Cladding
62
4.8.3
Modal Losses in a Waveguide with Low
Refractive-Index Contrast
63
4.9
Coupling into a Subwavelength Slab Waveguide Using a 2D
Gaussian Beam
64
4.9.1
ТЕ
Polarisation
64
4.9.2
TM Polarisation
67
4.10
Size of a Waveguide Mode
69
4.10.1
Modal Size of the Fundamental Modes of a Slab Waveguide
in the Long-Wavelength Limit
72
4.10.2
Modal Size of the Fundamental Modes of a Slab Waveguide
in the Short-Wavelength Limit
74
5
Slab Waveguides Made from
Anisotropie
Dielectrics
75
5.1
Dispersion Relations for the Fundamental Modes of a Slab Waveguide
75
5.1.1
Long-Wavelength Limit
76
5.1.2
Single-Mode Guidance Criterion
77
5.2
Using Transfer Matrix Method with
Anisotropie
Dielectrics
77
5.3
Coupling to the Modes of a Slab Waveguide Made of
Anisotropie
Dielectrics
78
6
Metamaterials in the Form of All-Dielectric Planar Multilayers
81
6.1
Effective Medium Approximation for a Periodic Multilayer with
Subwavelength Period
81
6.2
Extended Bloch Waves of an Infinite Periodic Multilayer
82
CONTENTS ix
6.3
Effective
Medium Approximation 84
6.4
Extending Metamaterial
Approximation
to Shorter Wavelengths
86
6.5
Ambiguities in the Interpretation of the Dispersion Relation of a
Planewave
Propagating in a Lossy Metamaterial
89
7
Planar Waveguides Containing All-Dielectric Metamaterials,
Example of Porous Waveguides
91
7.1
Geometry of a Planar Porous Waveguide
91
7.2
TE-Polarised Mode of a Porous Slab Waveguide
91
7.2.1
Effective Refractive Index and Losses of the Fundamental
TE
Mode
91
7.2.2
Single-Mode Propagation Criterion,
TE
Modes
95
7.2.3
Dispersion of the Fundamental
TE Mode
95
7.3
TM-Polarised Mode of a Porous Slab Waveguide
99
7.3.1
Effective Refractive Index and Losses of the Fundamental
TM Mode
99
7.3.2
Single-Mode Propagation Criterion, TM Modes
100
7.3.3
Dispersion of the Fundamental TM Mode
101
8
Circular Fibres Made of
Isotropie
Materials
103
8. 1
Circular Symmetric Solutions of Maxwell s Equations for an Infinite
Uniform Dielectric
104
8.2
Transfer Matrix Method
107
8.3
Fundamental Mode of a Step-Index Fibre
110
8.3.1
Low Refractive-Index Contrast (Weakly Guiding
Approximation)
111
8.3.2
Fundamental Mode Dispersion Relation in the
Long-Wavelength Limit (Any Refractive-Index Contrast)
114
8.4
Higher-Order Modes and their Dispersion Relations Near
Cutoff Frequencies
115
8.4.1
Method
1 116
8.4.2
Method
2 117
8.5
Dispersion of the Fundamental
m
= 1
Mode
122
8.6
Losses of the Fundamental
m
= 1
Mode
123
8.7
Modal Confinement and Modal Field Extent into the
Cladding Region
125
8.7.1
Short-Wavelength Limit (Strong Confinement)
126
8.7.2
Long-Wavelength Limit (Weak Confinement), General
Considerations
126
8.7.3
Modal Extent into Cladding in the Weak Confinement Regime.
Case of Modes with
m
> 1 126
8.7.4
Modal Extent into Cladding of the Fundamental
m
= 1
Mode
in the Long-Wavelength Limit
130
8.7.5
Examples of Field Distributions for
m
= 1,
and
m
= 3
Modes
133
8.7.6
Angle-Integrated Longitudinal Flux in the Weak Confinement
Regime
135
χ
CONTENTS
9
Circular
Fibres
Made of
Anisotropie
Materials
137
9.1
Circular Symmetric Solutions of Maxwell s Equations for an Infinite
Anisotropie
Dielectric
137
9.2
Transfer Matrix Method to Compute Eigenmodes of a Circular Fibre
Made of
Anisotropie
Dielectrics
139
9.3
Fundamental Mode of a Step-Index Fibre
141
9.3.1
Low Refractive-Index Contrast, Low Anisotropy
141
9.3.2
Long Wavelength Regime
144
9.4
Linearly Polarised Modes of a Circular Fibre
146
9.4.1
Fields of the Fundamental
m
= 1
Mode of a Circular Fibre
in the Long-Wavelength Regime
150
10
Metamaterials in the Form of a Periodic Lattice of Inclusions
155
10.1
Effective Dielectric Tensor of Periodic Metamaterials in the
Long-Wavelength Limit
156
10.1.1
Effective Medium Theory for a Square Lattice of
Circular Rods
158
10.1.2
Effective Medium Approximation for a Square Lattice
of Square Inclusions
161
10.2
Bloch Wave Solutions in the Periodic Arrays of Arbitrary-Shaped
Inclusions, Details of the
Planewave
Expansion Method
164
11
Circular Fibres Made of All-Dielectric Metamaterials
167
11.1
Porous-Core Fibres, Application in Low-Loss Guidance
of THz Waves
167
11.2
Multifilament Core Fibres, Designing Large Mode Area,
Single-Mode Fibres
175
11.3
Water-Core Fibres in THz, Guiding with Extremely
Lossy Materials
182
12
Modes at the Interface between Two Materials
185
12.1
Surface Modes Propagating at the Interface between Two Positive
Refractive Index Materials
185
12.2
Geometrical Solution for the Bound Surface Modes
188
12.3
Modes at the Interface between a Lossless Dielectric and an Ideal
Metal, Excitation of an Ideal Surface Plasmon
191
12.4
Modes at the Interface between a Lossless Dielectric and a Lossy
Material (Metal or Dielectric)
194
12.4.1
Modes at the Interface between One Lossless Dielectric and
One Lossy Dielectric
194
12.4.2
Modes at the Interface between a Lossless Dielectric and an
Imperfect Metal. Frequency Region in the Vicinity of a Plasma
Frequency (UV-Visible)
196
12.4.3
Modes at the Interface between a Lossless Dielectric and an
Imperfect Metal. Far-Infrared (THz) Spectral Range
203
12.5
Material Parameters and Practical Examples of Surface Plasmons
204
CONTENTS xi
13
Modes of a Metal Slab Waveguide
209
13.1
Modes of a Metal Slab Waveguide Surrounded by Two Identical
Dielectric Claddings
210
13.1.1
Weakly Coupled Surface Plasmons Guided by Thick and
Lossless Metal Slab
211
13.1.2
Long-Range Plasmon (Even
Supermode)
Guided by Thin and
Lossless Metal Slab
215
13.1.3
Odd
Supermode
Guided by Thin and Lossy Metal Slab
219
13.2
Long-Range Plasmon Guided by Thin and Lossy Metal Slab
221
13.2.1
Long-Range
Plasmon Guided by Thin and Lossy Metal Slab.
Visible-Mid-IR Spectral Range
221
13.2.2
Long-Range Plasmon Guided by Thin and Lossy Metal Slab.
Far-IR-(THz) Spectral Range
222
13.3
Modes of a Metal Slab Surrounded by Two Distinct Lossless Claddings.
Leaky Plasmonic Modes
226
13.3.1
Radiation Losses of a Leaky
Supermode
Guided by a
Nonsymmetric Slab Waveguide
228
14
Modes of a Metal Slot Waveguide
233
14.
1 Odd-Mode Dispersion Relation Near the Light Line of the Core
Material
nefí ~
nQ. Visible-Mid-IR Spectral Range
235
14.2
Odd-Mode Dispersion Relation near the Mode Cutoff neff ~
0.
Visible-Mid-IR Spectral Range
238
14.3
Fundamental Mode of a Metal Slot Waveguide. Visible-Mid-IR
Spectral Range
240
14.4
Fundamental Mode Dispersion Relation at Low Frequencies
ω
-+ 0.
Far-IR Spectral Range
243
15
Planar Metal/Dielectric Metamaterials
247
15.1
Extended Waves in the Infinite Metal/Dielectric Periodic Multilayers
(Long-Wavelength Limit)
247
15.2
Extending Metamaterial Approximation to Shorter Wavelengths
250
16
Examples of Applications of Metal/Dielectric Metamaterials
253
16.1
Optically Transparent Conductive Layers, Case of £tt
> 0,
ε±
> 0 253
16.2
Perfect Polarisation Splitter, Case of
f
ц >
0,
ε±
< 0 256
16.3
Surface States at the Interface between Lossless Dielectric and
Metal/Dielectric Metamaterials
260
16.4
Surface Plasmons in a Two-Material System
ε = εά
262
16.4.1
Surface Plasmon at the Interface with Metamaterial
1 262
16.4.2
Surface Plasmon at the Interface with Metamaterial
2 266
16.4.3
Surface Plasmon at the Interface with Metamaterial
3 268
16.5
Practical Application of Surface Plasmons Supported by
Metamaterials
1, 2, 3 271
16.5.1
Sensing of Changes in the Analyte Refractive Index Using
Surface Plasmons
271
16.5.2
Field Enhancement at the Metallic Surface
275
xii CONTENTS
17
Modes of Metallic Wires, Guidance in the UV-near-IR, Mid-IR and Far-IR
Spectral Ranges
281
17.1
Guidance by the Metallic Wires with Diameters Smaller than the Metal
Skin Depth
281
17.2
Guidance by the Metallic Wires with Diameters Much Larger than the
Metal Skin Depth
285
17.3
Wire Plasmons in the Visible-Near-IR Spectral Range
286
17.3.1
Cutoff Frequencies of the Wire Plasmons in the Visible-Near-IR
291
17.4
Wire Plasmons in the Mid-IR-Far
IR
Spectral Range
291
17.4.1
m= Wire Plasmon in the Mid-IR Range
291
17.4.2
m
- 0
Wire Plasmon in the Mid-IR Spectral Range
293
17.4.3
m
= 1
Wire Plasmon in the Far-IR Spectral Range
295
17.4.4
m
= 0
Wire Plasmon in the Far-IR Spectral Range
297
18
Semianalytical Methods of Solving Nonlinear Equations of Two Variables
301
18.1
Polynomial Solution of a Nonlinear Equation in the Vicinity of a Known
Particular Solution
301
18.2
Method of Consecutive Functional Iterations
302
18.3
Method of Asymptotics
304
References
307
Index
311
Seríes
Editors
Arthur Willoughby, University of Southampton, Southampton, UK
Peter Capper, SELEX Galileo Infrared Ltd, Southampton, UK
Safa
Kasap, University of Saskatchewan, Saskatoon, Canada
Nanostructured
and Subwavelength
Waveguides
Fundamentals and Applications
Maksim Skorobogatiy
Department of Engineering Physics,
École Polytechnique
de Montréal, Québec, Canada
Optical waveguides take a prominent role in photonics because they are able to trap and to transport light efficiently
between a point of excitation and a point of detection. Moreover, waveguides allow the management of many of
the fundamental properties of light and allow highly controlled interaction with other optical systems. For this reason
waveguides are ubiquitous in telecommunications, sensing, spectroscopy, light sources, and high power light delivery.
Nanostructured and subwavelength waveguides have additional advantages; they are able to confine light at a
length scale below the diffraction limit and enhance or suppress light-matter interaction, as well as manage
fundamental properties of light such as speed and direction of energy and phase propagation.
This book presents semi-analytical theory and practical applications of a large number of subwavelength and
nanostructured optical waveguides and fibers operating in various regions of the electromagnetic spectrum
including visible, near and mid-IR and THz. A large number of approximate, while highly precise analytical
expressions are derived that describe various modal properties of the planar and circular
isotropie,
anisotropic, and
metamaterial waveguides and fibers, as well as surface waves propagating on planar, and circular interfaces.
A variety of naturally occurring and artificial materials are also considered such as dielectrics, metals, polar materials,
anisotropic all-dielectric and metal-dielectric metamaterials.
Contents are organized around four major themes:
•
Guidance properties of subwavelength waveguides and fibers made of homogeneous,
generally anisotropic materials
•
Guidance properties of nanostructured waveguides and fibers using both exact geometry
modelling and effective medium approximation
•
Development of the effective medium approximations for various 1D and 2D
nanostructured materials and extension of these approximations to shorter wavelengths
•
Practical applications of subwavelength and nanostructured waveguides and fibers
Nanostructured and Subwavelength Waveguides is unique in that it collects in a single place
an extensive range of analytical solutions which are derived in various limits for many
practically important and popular waveguide and fiber geometries and materials.
Alsoavaflabtt
as an «-book
|
any_adam_object | 1 |
author | Skorobogatiy, Maksim 1974- |
author_GND | (DE-588)137805853 |
author_facet | Skorobogatiy, Maksim 1974- |
author_role | aut |
author_sort | Skorobogatiy, Maksim 1974- |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV041184084 |
classification_rvk | UH 3000 UH 5760 ZN 6285 |
ctrlnum | (OCoLC)812410161 (DE-599)GBV696945991 |
dewey-full | 621.3815/2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3815/2 |
dewey-search | 621.3815/2 |
dewey-sort | 3621.3815 12 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02130nam a2200445 c 4500</leader><controlfield tag="001">BV041184084</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150225 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130724s2012 d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">696945991</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119974512</subfield><subfield code="9">978-1-119-97451-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)812410161</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV696945991</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815/2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 3000</subfield><subfield code="0">(DE-625)145643:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5760</subfield><subfield code="0">(DE-625)145707:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6285</subfield><subfield code="0">(DE-625)157543:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Skorobogatiy, Maksim</subfield><subfield code="d">1974-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137805853</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanostructured subwavelength waveguides</subfield><subfield code="b">fundamentals and applications</subfield><subfield code="c">Maksim Skorobogatiy</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 318 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series in materials for electronic & optoelectronic applications</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lichtwellenleiter</subfield><subfield code="0">(DE-588)4267405-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lichtwellenleiter</subfield><subfield code="0">(DE-588)4267405-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://catalogimages.wiley.com/images/db/jimages/9781119974512.jpg</subfield><subfield code="3">Cover</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">V:DE-576;X:wiley</subfield><subfield code="q">image/jpeg</subfield><subfield code="u">http://swbplus.bsz-bw.de/bsz369943473cov.htm</subfield><subfield code="3">Cover</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026159298&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026159298&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026159298</subfield></datafield></record></collection> |
id | DE-604.BV041184084 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:41:31Z |
institution | BVB |
isbn | 9781119974512 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026159298 |
oclc_num | 812410161 |
open_access_boolean | |
owner | DE-83 DE-703 DE-11 |
owner_facet | DE-83 DE-703 DE-11 |
physical | XII, 318 S. graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Wiley |
record_format | marc |
series2 | Wiley series in materials for electronic & optoelectronic applications |
spelling | Skorobogatiy, Maksim 1974- Verfasser (DE-588)137805853 aut Nanostructured subwavelength waveguides fundamentals and applications Maksim Skorobogatiy 1. publ. Chichester Wiley 2012 XII, 318 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Wiley series in materials for electronic & optoelectronic applications Lichtwellenleiter (DE-588)4267405-0 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Lichtwellenleiter (DE-588)4267405-0 s Nanostrukturiertes Material (DE-588)4342626-8 s DE-604 http://catalogimages.wiley.com/images/db/jimages/9781119974512.jpg Cover V:DE-576;X:wiley image/jpeg http://swbplus.bsz-bw.de/bsz369943473cov.htm Cover Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026159298&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026159298&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Skorobogatiy, Maksim 1974- Nanostructured subwavelength waveguides fundamentals and applications Lichtwellenleiter (DE-588)4267405-0 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
subject_GND | (DE-588)4267405-0 (DE-588)4342626-8 |
title | Nanostructured subwavelength waveguides fundamentals and applications |
title_auth | Nanostructured subwavelength waveguides fundamentals and applications |
title_exact_search | Nanostructured subwavelength waveguides fundamentals and applications |
title_full | Nanostructured subwavelength waveguides fundamentals and applications Maksim Skorobogatiy |
title_fullStr | Nanostructured subwavelength waveguides fundamentals and applications Maksim Skorobogatiy |
title_full_unstemmed | Nanostructured subwavelength waveguides fundamentals and applications Maksim Skorobogatiy |
title_short | Nanostructured subwavelength waveguides |
title_sort | nanostructured subwavelength waveguides fundamentals and applications |
title_sub | fundamentals and applications |
topic | Lichtwellenleiter (DE-588)4267405-0 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
topic_facet | Lichtwellenleiter Nanostrukturiertes Material |
url | http://catalogimages.wiley.com/images/db/jimages/9781119974512.jpg http://swbplus.bsz-bw.de/bsz369943473cov.htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026159298&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026159298&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT skorobogatiymaksim nanostructuredsubwavelengthwaveguidesfundamentalsandapplications |