Principles of chemical engineering practice:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2013
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 429 S. Ill., graph. Darst. |
ISBN: | 0470536748 9780470536742 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041169545 | ||
003 | DE-604 | ||
005 | 20131120 | ||
007 | t | ||
008 | 130723s2013 ad|| |||| 00||| eng d | ||
020 | |a 0470536748 |9 0-470-53674-8 | ||
020 | |a 9780470536742 |9 978-0-470-53674-2 | ||
035 | |a (OCoLC)859373940 | ||
035 | |a (DE-599)BVBBV041169545 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-11 |a DE-83 | ||
084 | |a VN 5010 |0 (DE-625)147555: |2 rvk | ||
084 | |a VN 7000 |0 (DE-625)147598:253 |2 rvk | ||
084 | |a VN 7001 |0 (DE-625)147598:254 |2 rvk | ||
100 | 1 | |a DeLancey, George |d 1940- |e Verfasser |0 (DE-588)1042245436 |4 aut | |
245 | 1 | 0 | |a Principles of chemical engineering practice |c George DeLancey |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2013 | |
300 | |a XXI, 429 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Verfahrenstechnik |0 (DE-588)4062781-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Verfahrenstechnik |0 (DE-588)4062781-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026144777&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-026144777 |
Datensatz im Suchindex
_version_ | 1804150583256416256 |
---|---|
adam_text | Titel: Principles of chemical engineering practice
Autor: DeLancey, George
Jahr: 2013
CONTENTS
PREFACE
PARTI MACROSCOPIC VIEW
1 Chemical Process Perspective
1.1 Some Basic Concepts in Chemical Processing, 3
1.2 Acrylic Acid Production, 5
1.2.1 Catalysis, 7
1.2.2 Feed Section—Pumps and Compressors, 8
1.2.3 Reactor Section—Reactor, Heat Exchangers, and Gas Absorption, 12
1.2.4 Downstream Processing—Distillation and Extraction, 16
1.2.5 Storage, 19
1.2.6 Safety, 20
1.2.7 Overview of Typical Process, 20
1.3 Biocatalytic Processes—Enzymatic Systems, 21
1.3.1 Biotransformation, 22
1.3.2 Examples of Industrial Processes, 23
1.3.3 Alkyl Glucosides, 23
1.4 Basic Database, 24
Problems, 26
2 Macroscopic Mass Balances 2
2.1 Chemical Processing Systems, 28
Example 2.1-1: Active Units in Acrylic Acid Separation Train, 29
2.1.1 Input and Output Rates of Flow, 29
2.1.1.1 Some Equations of State, 31
Example 2.1.1.1-1: Calculate the Molar Volume
of Methane at —250°F, 32
2.1.1.2 Mass Rate of Production, 36
viii CONTENTS
2.2 Steady-State Mass Balances Without Chemical Reactions, 37
2.2.1 Degrees of Freedom, 37
Example 2.2.1-1: Manufacture of Sugar, 39
Example 2.2.1-2: Air Separation Plant, 40
2.3 Steady-State Mass Balances with Single Chemical Reactions, 41
2.3.1 Degrees of Freedom: Reaction Rate and Key Component, 42
Example 2.3.1-1: Production of Formaldehyde, 42
Example 2.3.1-2: Manufacture of Nitroglycerin, 44
2.4 Steady-State Mass Balances with Multiple Chemical Reactions, 46
2.4.1 Degrees of Freedom and Reaction Extents, 46
Example 2.4.1-1: Mass Balance on Acrylic Acid Reactor R-301, 46
2.4.2 Test for Independent Reactions, 47
Example 2.4.2-1 : Independent Reactions in the Acrylic Acid System, 47
Example 2.4.2-2: Selection of Independent Reactions, 48
2.4.3 Construction of Independent Reactions, 48
Example 2.4.3-1: Independent Reactions in the Acrylic Acid System, 49
Problems, 50
3 Macroscopic Energy and Entropy Balances 53
3.1 Basic Thermodynamic Functions, 53
3.1.1.1 Gibbs-Duhem Equation, 55
3.2 Evaluation of H and S for Pure Materials, 55
3.2.1 Gases—Departure Functions, 55
Example 3.2.1-1: Departure Functions for H and S Using the Redlich-Kwong-
Soave (RKS) Equation of State, 57
Example 3.2.1-2: Evaluation of an Enthalpy Change for Ethylene, 57
3.2.2 Liquids and Solids, 58
Example 3.2.2-1: Enthalpy Change in the Injection Molding of
Polystyrene, 59
3.3 Evaluation of H and S Functions for Mixtures, 59
3.3.1 Ideal Gas Mixture, 59
3.3.2 Ideal Solution, 60
3.3.3 Nonideal Gas Mixtures, 60
3.3.4 Nonideal Liquid Solutions: Heat of Solution, 60
Example 3.3.4-1: Partial Molar Enthalpies for HCl-Water System, 62
3.4 Energy Flows and the First Law, 62
3.4.1 Degrees of Freedom, 63
3.5 Energy Balances Without Reaction, 64
3.5.1 Utilization of the Second Law, 64
Example 3.5.1-1: Minimum Work Required for Isothermal Pumping
of a Liquid, 64
3.5.2 System Definition for Duty and Flow Rate Calculation, 64
Example 3.5.2-1: Calculation of Heat Duty and Stream Flow Rate for
Exchanger E-309, 65
3.5.3 Arbitrariness of Reference State for Unreactive Systems, 66
Example 3.5.3-1: Energy Balance on T-303 Extraction Unit. Feed Reference
State, 66
Example 3.5.3-2: Calculation of Net Heat Duty for Distillation Tower T-304.
Feed Reference State, 67
CONTENTS ix
3.5.4 Mixing of Nonideal Liquids; Use of Partial Molar Quantities, 68
3.5.4.1 Mixing Two Liquid Streams at Different Temperatures and
Concentrations, 68
Example 3.5.4.1-1: Dilution of an HCl Mixture, 69
3.6 Energy Balances with Reaction-Ideal Solution, 70
3.6.1 Single Reaction-Ideal Solution, 70
3.6.1.1 Reference States for Reactive Systems—Standard Heat
of Reaction, 71
3.6.1.2 Heat Duty and Adiabatic Operation, 72
Example 3.6.1.2-1 Energy Balances on Methanol Oxidation
Reactor, 72
3.6.2 Single Reactions—Neutralization of Acids, 74
3.6.3 Multiple Reactions, 74
Example 3.6.3-1: Heat Duty for Acrylic Acid Reactor R-301, 75
Example 3.6.3-2: Feed Temperature Required in Methanol Synthesis, 76
3.7 Entropy Balances, 77
3.7.1 Macroscopic Entropy Balance, 78
3.7.2 Thermodynamic Models, 78
Example 3.7.2-1 : Thermodynamic Models for Membrane Outlet
Temperature, 78
3.7.3 The Availability and Lost Work, 80
3.7.4 Process Efficiency, 81
3.7.4.1 Heat Exchanger with Saturated Heat Source, 81
Example 3.7.4.1-1: Heating Water from 25 to 95°C Using Steam at
0.125 MPa(106°C), 82
3.7.4.2 Distillation, 82
Example 3.7.4.2-1: Column Efficiency Evaluation for Acylation
Reactor Effluent in Ibuprofen Manufacture, 83
Problems, 83
4 Macroscopic Momentum and Mechanical Energy Balances 86
4.1 Momentum Balance, 86
Example 4.1-1: Force on a U-Bend, 87
4.2 Mechanical Energy Balance, 88
4.3 Applications to Incompressible Flow Systems, 89
4.3.1 Flow of Liquids in Piping Systems, 89
4.3.1.1 Flow in Pipes—The Friction Loss Factor, 89
4.3.1.2 Sudden Expansion—Calculation of Friction Loss Factor, 91
4.3.1.3 Fittings and Valves, 91
4.3.1.4 Pump Sizing, 91
Example 4.3.1.4-1: Power Required for P-301 A/B:
Acrylic Acid Plant, 91
Example 4.3.1.4-2: NPSH Consideration in Pumping
o-Dichlorobenzene from Temporary Storage to Process Storage, 93
Problems, 94
5 Completely Mixed Systems—Equipment Considerations 95
5.1 Mixing and Residence Time Distributions—Definitions, 95
Example 5.1-1: Production of w-Hexyl Glucoside—Residence Time and Reactor
Volume, 96
X CONTENTS
5.2 Measurement and Interpretation of Residence Time Distributions, 97
5.3 Basic Aspects of Stirred Tank Design, 99
5.3.1 Tank Dimensions and Impeller Specifications, 99
Example 5.3.1-1 Mixer Dimensions for T-303 Alternative Solution, 100
5.3.2 Heuristics for Mixing and Agitation, 102
5.3.2.1 Power Requirements, 102
5.3.2.2 Gas-Liquid Systems, 103
5.3.2.3 Liquid-Liquid Systems, 103
Example 5.3.2.3-1 Power Required for T-303 Alternative, 104
5.3.2.4 Solid Suspensions, 104
Example 5.3.2.4-1 Sizing of Hexyl Glucoside Slurry Adsorber, 105
Problems, 106
6 Separation and Reaction Processes in Completely Mixed Systems 107
6.1 Phase Equilibrium: Single-Stage Separation Operations, 107
6.2 Gas-Liquid Operations, 109
6.2.1.1 Gas Absorption and Stripping, 109
6.2.1.2 Flash Vaporization, 110
6.2.2 Vapor-Liquid Equilibrium, 111
6.2.2.1 Equation of State Method, 112
6.2.2.2 Activity Coefficient Method, 115
6.2.2.3 Summary of VLE Expressions and Data, 125
Example 6.2.2.3-1: Comparison of Several Methods for Obtaining the
K Values for an Equimolar Mixture of Ethane, Propane, and «-Butane at
—70°F and 300 psi, 125
6.2.3 Gas Absorption and Stripping, 126
6.2.3.1 Mass Balance-Constant Total Flows, 128
6.2.3.2 Mass Balances—Nondiffusing Components, 130
Example 6.2.3.2-1: Acetone Absorption, 130
Example 6.2.3.2-2: Determine the Solvent Requirements for Single-
Stage Version of Tower 302: Off-Gas Absorber in Acrylic Acid
Process, 132
6.3 Flash Vaporization, 133
6.3.1 Mass Balances, 133
6.3.2 Energy Balance, 134
6.3.3 Equilibrium, 134
6.3.4 Common Problem Specifications, 134
6.3.5 Distribution Function—Limitations, 135
6.3.6 Bounds on Bubble and Dew Points, 135
6.3.7 Solution for A/*1 /A/^—O, P—Bubble-Point Temperature, 135
Example 6.3.7-1 : Calculate the Bubble Point of the Following Mixture
at2atm, 136
Example 6.3.7-2: Saturation Temperature for IPA-Water System, 136
6.3.8 Solution: for Af{V)/N(F) = l,P Specified: Dew-Point
Temperature, 137
Example 6.3.8-1 : Calculate the Dew Point of the Mixture in the Preceding
Example, 137
Example 6.3.8-2: Calculate the Dew Point of an Equimolar Mixture of
Propylene and Isobutane at 20 atm Assuming an Ideal Liquid and Application
of the Peng-Robinson Equation of State for the Vapor, 137
CONTENTS xi
Example 6.3.8-3: Repeat Example 6.3.8-2 but Use the DePriester Charts to
Formulate the Equilibrium Relations, 139
6.3.9 Solution for T, P Specified: Isothermal Flash, 140
Example 6.3.9-1: Isothermal Flash Calculation, 141
Example 6.3.9-2: Flash of the Extract from the Acid Extractor (Tower 303),
Stream 13, 141
6.3.10 General Isothermal Flash Iteration, 143
6.3.11 Sizing of Flash Drum, 143
Example 6.3.11-1: Size the Flash Drum for Example 6.3.9-1, 144
6.4 Liquid-Liquid Extraction, 145
6.4.1 Equilibrium in Ternary Systems, 145
6.4.1.1 Solvent Selection, 146
6.4.1.2 Data Collection and Representation, 146
6.4.1.3 Interpolation, 147
6.4.2 Single-Stage Operation, 147
6.4.2.1 Equipment, 147
6.4.2.2 Mixture Rule, 148
6.4.2.3 Mass Balances, 148
Example 6.4.2.3-1: Extraction of HAc from Chloroform
with Water, 149
Example 6.4.2.3-2: T-303 Acid Extractor—Solvent Flow for Single
Equilibrium Stage, 150
6.5 Adsorption, 151
6.5.1 Adsorbents, 152
6.5.2 Gas Adsorption, 154
6.5.2.1 Equilibrium Relations for a Single Adsorbate, 156
6.5.3 Liquid Adsorption, 157
6.5.3.1 Equilibrium, 157
6.5.3.2 Liquid Adsorption Operations, 157
6.6 Single-Phase Stirred Tank Reactors, 159
6.6.1 Continuous Stirred Tank Reactors, 160
6.6.1.1 Liquid Phase Systems—Temperature Specified, 160
6.6.1.2 Gas Phase Systems—Temperature Specified, 161
Example 6.6.1.2-1: Multiple Second-Order Reactions
and Sizing of R-301, 162
6.6.1.3 Selection of Reactor Temperature, 163
Example 6.6.1.3-1: Temperature Selection for Acrylic
Acid Reactor, 164
6.6.1.4 CSTR—Energy Balance, 165
Example 6.6.1.4-1 : A Priori Calculation of Heat Load on Acrylic Acid
Reactor R-301, 165
6.6.1.5 Autothermal Operation, 166
6.6.1.6 Heuristics, 168
6.6.2 Isothermal Batch Reactor, 168
6.6.2.1 Mass Balance, 168
6.6.2.2 Liquid Phase Reactions at Constant Density, 169
6.6.2.3 Some Background for Example 6.6.2.3-1, 169
xii CONTENTS
Example 6.6.2.3-1: Production of L-Tyrosine-Feed Stock
to L-Dopa Plant, 170
6.6.2.4 Gas Phase Reactions and Equation of State at Constant
Volume, 172
Example 6.6.2.4-1: Reaction Order for Sulfuryl Chloride
Oxidation, 173
6.7 Chemical Reaction Equilibrium, 174
Example 6.7-1: Equilibrium Constant for the Synthesis of Hexyl Glucoside by
Condensation, 176
Example 6.7-2: Check on Methanol Conversion to Formaldehyde, 176
Example 6.7-3: Phase Equilibrium with Chemical Reaction—Synthesis of
Hexyl Glucoside, 178
Problems, 179
PART II MICROSCOPIC VIEW 181
7 Multistage Separation and Reactor Operations 183
7.1 Absorption and Stripping, 183
7.1.1 Isothermal Binary Gas Absorption, 184
7.1.2 Countercurrent Cascade-Tray Tower, 185
7.1.3 Graphical Procedures for Single Components, 186
Example 7.1.3-1: Butane Recovery—Fixed Number of Stages, 190
7.1.4 Isothermal Liquid Stripping, 191
Example 7.1.4-1 : Stripping of Acetone from Water, 193
7.1.5 Dilute Multicomponent Absorption and Stripping, 194
Example 7.1.5-1: Methane Purification, 195
7.1.6 Column Efficiency, 196
7.1.7 Column Diameter and Height, 197
Example 7.1.7-1: Tower 303: Off-Gas Absorber in Acrylic Acid Process, 197
7.1.8 Heuristics for Absorption, 199
7.2 Distillation, 200
7.2.1 Construction of Distillation Operation, 200
7.2.2 Equipment for Distillation, 201
7.2.3 Application of Material and Energy Balances to Feed Tray, 203
7.2.4 Degrees of Freedom, 204
7.2.5 Material Balance for Enriching or Rectifying Section, 205
7.2.6 Material Balance for Stripping Section, 206
7.2.7 Intersection of Operating Lines, 206
Example 7.2.7-1: Operating Lines in Acetic Acid-Water Distillation, 207
7.2.8 Number of Stages, 208
Example 7.2.8-1: Number of Stages for Acetic Acid-Water Distillation, 210
7.2.9 High Purity Products, 210
Example 7.2.9-1 : Stages Required for Acetic Acid-Water Distillation Using
the Recursion Relations, 211
7.2.10 Energy Requirements, 212
7.2.10.1 Total Condenser, 212
7.2.10.2 Partial Condenser, 212
7.2.10.3 Reboiler, 212
Example 7.2.10.3-1: Energy Loads on the Acetic Acid Distillation
Tower, 213
7.2.11 Efficiency and Column Height, 213
Example 7.2.11-1: Height of Acetic Acid-Water Column, 214
7.2.12 Summary of Calculations and Setting Process Operating
Conditions, 214
Example 7.2.12-1: Determine the Minimum Number of Stages for the Acetic
Acid-Water Distillation, 215
Example 7.2.12-2: Determine the Minimum Reflux Ratio for the Acetic Acid-
Water Distillation, 215
7.2.13 Heuristics for Distillation Towers, 217
Example 7.2.13-1: Tower 305, 218
7.3 Liquid-Liquid Extraction, 221
7.3.1 Multistage Cross-Flow Cascade, 221
7.3.2 Multistage Countercurrent Operation, 222
Example 7.3.2-1 : Extraction of Acetone from MIBK with Water, 224
Example 7.3.2-2: T-303 Acid Extractor—Number of Equilibrium Stages and
Solvent Flow Required, 229
7.3.3 Extraction Equipment, 232
7.3.4 Height and Efficiency of Sieve Tray Towers, 233
Example 7.3.4-1: Height and Number of Trays on Tower 303 with Unagitated
Sieve Tray Design, 233
7.3.5 Mixer-Settler Units, 234
Example 7.3.5-1: Typical Settler Size for Mixer-Settler Alternative
to Tower 303, 234
7.3.6 Heuristics for Liquid-Liquid Extraction, 234
7.4 Multiple Reactor Stages, 235
7.4.1 Comparison with Batch Reactor, 235
7.4.2 Comparisons with Plug Flow Reactor, 235
7.4.3 Number of Stages Required for a Given Conversion, 236
Example 7.4.3-1 : Number of Stages for a Diels-Alder Reaction, 236
7.4.4 Temperature Programs for CSTR Stages, 237
7.4.4.1 Single Reactions, 237
7.4.4.2 Multiple Reactions, 238
7.5 Staged Fixed-Bed Converters for Exothermic Gas Phase Reaction, 238
Example 7.5-1 : Staged Fixed-Bed Converter for S02 Oxidation, 240
Problems, 241
Microscopic Equations of Change 243
8.1 Mass Flux: Average Velocities and Diffusion, 244
8.1.1 Mass Flow Rates Used in Material Balances, 245
8.1.2 Average Velocities and Diffusion Flows, 246
8.1.3 Superficial Velocities, 248
Example 8.1.3-1 Slip Velocity in Liquid-Liquid
and Gas-Liquid Systems, 248
8.2 Momentum Flux: Stress Tensor, 249
8.3 Energy Flux: Conduction, 250
8.4 Balance Equations, 251
8.4.1 Mass Conservation, 251
8.4.2 Linear and Angular Momentum Balance, 252
8.4.3 Conservation of Energy, 252
CONTENTS
8.5 Entropy Balance and Flux Expressions, 254
8.5.1 Co: Scalar Processes, 255
8.5.1.1 VolumeFlow, 255
8.5.1.2 Homogeneous Reaction Kinetics, 255
8.5.1.3 Heterogeneous Catalytic Kinetics, 256
8.5.2 ov Vector Processes: Diffusion and Conduction, 260
8.5.3 Viscous Momentum Flux, 261
8.5.4 Estimation of Transport Coefficients, 261
8.5.4.1 Diffusivities, 261
Example 8.5.4.1-1 Estimation of Methane Diffusivity in Nitrogen for
Application to Effective Diffusion in Honeycomb Monolith
Reactor, 261
8.5.4.2 Thermal Conductivities, 261
8.5.4.3 Viscosity, 265
8.6 Turbulence, 265
8.6.1 Time-Averaged Mass Balance, 266
8.6.2 Turbulent Flux Expressions, 267
8.6.2.1 Empty Tubes, 267
8.6.2.2 Radial Dispersion in Packed Beds, 268
8.6.2.3 Axial Dispersion, 268
8.7 Application of Balance Equations, 269
8.7.1 Boundary Conditions, 269
8.7.2 Reduction to Scalar Equations: Laminar Flow in Tubes, 270
8.7.3 Introduction to Dimensionless Numbers and Characteristic Times, 272
8.7.4 Dual Geometry and Boundary Conditions for Fixed Beds, 274
Problems, 275
Nonturbulent Isothermal Momentum Transfer 276
9.1 Rectangular Models, 276
9.1.1 Slit Flow: Extrusion of Plastics Through Narrow Dies, 276
Example 9.1.1-1: Average Velocity and Volumetric Flow Rate, 280
9.2 Cylindrical Systems, 280
9.2.1 Axial Flow—Flow in Pipes and Tubes, 280
Example 9.2.1-1: Volumetric Flow Rate, 281
Example 9.2.1-2: Average Velocities, 281
9.2.1.1 Friction Factor, 281
9.2.1.2 Pump Requirements, 281
9.2.1.3 Distribution of Residence Times, 282
9.2.1.4 Laminar Flow Reactor (and Substantial Derivative), 282
Example 9.2.1.4-1: Application of Microscopic Mass Balance to
Laminar Flow Reactor, 282
9.2.1.5 Wetted Wall Towers, 28 3
Example 9.2.1.5-1: Error in Film Thickness Approximation, 285
9.2.2 Angular Flow, 286
9.2.2.1 Couette Viscometer, 286
9.3 Spherical Systems, 287
9.3.1 Creeping Flow Around a Solid Sphere, 287
9.3.1.1 Application to Decanter Design, 289
Example 9.3.1.1-1: Separation of an Oil Water Mixture, 289
9.4 Microfluidics—Gas Phase Systems, 289
9.4.1 A Model of Gas Flow in Microchannels, 290
9.4.1.1 Momentum and Mass Balances, 290
9.4.1.2 Mass Balance: Axial Velocity Distribution, 291
9.4.1.3 Pressure Distribution, 292
Example 9.4.1.3-1: Helium Flow in a Long MicroChannel, 294
Problems, 294
10 Nonturbulent Isothermal Mass Transfer 296
10.1 Membranes, 296
10.1.1 Material Balance for Generic Membrane, 297
10.1.2 Gas Separations, 298
Example 10,1.2-1: Greenhouse Gas Removal from Power Station Flue
Gas—Completely Mixed Membrane Model with No Sweep, 300
10.1.3 Liquid Separations—Reverse Osmosis, 301
Example 10.1.3-1: Regeneration of Pulping Feed Solution in Paper
Production, 304
10.1.4 Porous Asymmetric and Composite Membranes—Overall Mass
Transfer Coefficient, 305
10.2 Diffusion Models for Porous Solids, 307
10.2.1 Effective Diffusivity of Porous Catalysts, 307
10.2.1.1 Pore Diffusion, 307
10.2.1.2 Surface Diffusion, 308
10.2.2 Tortuosity Factor Model, 309
10.2.3 Parallel Pore Model, 309
Example 10.2.3-1: Evaluation of Tortuosity in Parallel Pore Model for
Honeycomb-Type Monolith Catalyst, 310
10.3 Heterogeneous Catalysis, 311
10.3.1 Effectiveness of a Single Closed Pore, 311
Example 10.3.1-1: Key Component Kinetics for S02 Oxidation, 313
10.3.2 Effectiveness of Catalyst Particle, 314
10.4 Transient Adsorption by Porous Solid, 316
Example 10.4-1: The Recovery of Hexyl Glucoside, 317
10.5 Diffusion with Laminar Flow, 318
10.5.1 Wetted Wall Tower—Short Contact Time, 318
10.5.1.1 Physical Absorption, 318
10.5.1.2 Chemical Absorption, 319
10.5.2 Laminar Flow in a Tube with Catalytic Walls, 320
Problems, 322
11 Energy Transfer Under Nonturbulent Conditions
11.1 Conduction in Solids-Composite Walls, 325
Example 11.1-1: Insulated Firebox for Steam Reforming, 326
11.2 Thermal Effects in Porous Catalysts, 327
11.2.1 Temperature Rise due to Single Chemical Reaction, 327
11.2.2 Effectiveness Factor for Single Irreversible Reaction with Heat Effect,
324
328
xvi CONTENTS
11.3 Heat Transfer to Falling Film—Short Contact Times, 330
11.4 Moving Boundary Problem, 332
Example 11.4-1 : Onset of Freezing in a Pipe, 333
Problems, 334
12 Isothermal Mass Transfer Under Turbulent Conditions 335
12.1 Intraphase Mass Transfer Coefficients, 335
12.1.1 Film-Penetration Theory, 335
12.1.2 Penetration Theories, 337
12.1.3 Film Theory, 338
12.2 Interphase Mass Transfer Coefficients—Controlling
Resistances, 338
12.3 Measurement and Correlation of Mass Transfer Coefficients, 339
12.3.1 Measurement of Mass Transfer Coefficients, 339
12.3.2 Correlation of Mass Transfer Coefficients, 340
Example 12.3.2-1 : Determination of Liquid Mass Transfer Coefficients
in a Fixed Bed, 341
12.4 Fixed Beds, 342
12.4.1 Fixed-Bed Adsorption, 342
12.4.1.1 Ideal Case, 342
12.4.1.2 More General Model, 343
12.4.1.3 Gas Phase, 343
12.4.1.4 Intraparticle Diffusion, 344
12.4.1.5 LDF (Linear Driving Force) Model, 344
12.5 Pipes, 345
Î 2.5.1 Turbulent Flow in a Pipe with Catalytic Walls, 345
12.6 Particles, Drops, and Bubbles in Agitated Systems, 346
12.6.1 Slurry Adsorption—External Mass Transfer Control, 347
Example 12.6.1-1 Adsorption Time and Batch Integration in Continuous
Processes, 348
12.7 Packed Towers—Gas Absorption, 349
12.7.1.1 Heuristics for Packed Towers, 349
12.7.2 Mass Transfer Correlations, 350
12.7.3 Mass Balances, 351
12.7.3.1 For the Liquid, 352
12.7.3.2 For the Gas, 352
12.7.3.3 Unreactive Case with Henry s Law, 353
Example 12.7.3.3-1 : Sulfur Dioxide Absorber, 355
12.8 Applification of Experimental Mass Transfer Coefficients, 357
12.8.1 Free Fluxes, 357
12.8.2 Constrained Fluxes, 358
12.8.2.1 Diffusion Through a Stagnant Film: Absorption with Constant
Flows, 358
Example 12.8.2.1-1: Height of Packed Bed in S02 Absorption Using
Method Suitable for Nonlinear Equilibrium Data, 359
12.8.2.2 Equimolar Counter-Diffusion, 360
12.8.2.3 Heterogeneous Chemical Reaction, 360
12.8.2.4 Kinetics Experiments, 361
CONTENTS
12.8.2.5 Fixed-Bed Reactor Modeling, 362
12.8.3 Homogeneous Chemical Reaction, 362
12.8.3.1 Irreversible First-Order Kinetics, 363
12.8.3.2 Surface Renewal Theory, 364
12.8.3.3 Instantaneous Reactions, 364
12.8.3.4 Linearized Kinetics, 365
Problems, 365
13 Interphase Momentum Transfer Under Turbulent Conditions 367
13.1 Pressure Drop in Conduits and Fixed Beds, 368
13.1.1 Turbulent Flow of Gases in Pipelines, 369
13.1.1.1 Isothermal Flow in Pipelines, 370
Example 13.1.1.1-1: Pressure Drop and Pipe Size for Gas Supply
Line, 370
13.1.1.2 Compressors, 372
13.1.2 Pressure Drop in Fixed Beds, 375
13.2 Flow Over Submerged Spheres, 376
13.2.1 Momentum Balance for Single Particle, 377
Example 13.2.1-1: Diameter of Gas-Liquid Separators, 377
13.2.2 Terminal Velocities in Newtonian Fluids: Solid Suspensions, 377
Example 13.2.2-1: Slurry Adsorption of Hexyl Glucoside, 378
13.2.3 Fluidization Velocities: Diameter of Fluidized Beds, 379
Example 13.2.3-1: Diameter of R-301 Reactor, 380
13.2.4 Flooding Velocity in Packed Towers: Tower Diameter and Pressure
Drop, 381
Example 13.2.4-1: Sulfur Dioxide Absorber, 382
Problems, 383
14 Interphase Energy Transfer Under Turbulent Conditions 384
14.1 Heat Transfer Coefficients—Analogy with Mass Transfer, 384
14.2 Heat Exchangers, 385
14.2.1 Double Pipe Exchangers, 387
Example 14.2.1-1 Cooling of HCl Product from Adiabatic Mixing, 389
14.2.2 Shell and Tube Heat Exchangers, 390
14.2.2.1 Constant Wall Temperature, 390
Example 14.2.2.1-1: Exchanger 309—Solvent Endings, 392
14.3 Multi-Tubular Catalytic Reactors, 395
14.3.1 Fixed-Bed Constant Wall Temperature One-Dimensional Model, 395
14.3.1.1 Bulk Phase Mass Balance (Molar Units), 396
14.3.1.2 Particle Phase Mass Balance (Molar Units), 397
14.3.1.3 Particle Phase Energy Balance, 397
14.3.1.4 Bulk Phase Energy Balance, 397
14.3.1.5 Momentum Balance on Interstitial Fluid, 398
14.3.2 Some Operational Considerations, 398
Problems, 399
15 Microscopic to Macroscopic 400
15.1 Macroscopic Mass Balance, 400
xviii CONTENTS
15.2 Macroscopic Energy Balance, 401
15.3 Macroscopic Mechanical Energy Balance, 402
15.3.1 Unsteady-State Form, 403
15.3.2 Steady-State Systems, 403
Problems, 404
APPENDIX A PERIODIC TABLE 405
APPENDIX B CONVERSION FACTORS 406
APPENDIX C PARTIAL DATABASE FOR ACRYLIC
ACID PROCESS 409
APPENDIX D SOME MATHEMATICAL RESULTS 414
APPENDIX E MASS BALANCE IN CYLINDRICAL COORDINATES
AND LAMINAR FLOW IN 2 DIRECTION 418
NOMENCLATURE 419
REFERENCES 423
INDEX 427
|
any_adam_object | 1 |
author | DeLancey, George 1940- |
author_GND | (DE-588)1042245436 |
author_facet | DeLancey, George 1940- |
author_role | aut |
author_sort | DeLancey, George 1940- |
author_variant | g d gd |
building | Verbundindex |
bvnumber | BV041169545 |
classification_rvk | VN 5010 VN 7000 VN 7001 |
ctrlnum | (OCoLC)859373940 (DE-599)BVBBV041169545 |
discipline | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01400nam a2200361 c 4500</leader><controlfield tag="001">BV041169545</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131120 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130723s2013 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470536748</subfield><subfield code="9">0-470-53674-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470536742</subfield><subfield code="9">978-0-470-53674-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859373940</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041169545</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 5010</subfield><subfield code="0">(DE-625)147555:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7000</subfield><subfield code="0">(DE-625)147598:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7001</subfield><subfield code="0">(DE-625)147598:254</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">DeLancey, George</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1042245436</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of chemical engineering practice</subfield><subfield code="c">George DeLancey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 429 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verfahrenstechnik</subfield><subfield code="0">(DE-588)4062781-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verfahrenstechnik</subfield><subfield code="0">(DE-588)4062781-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026144777&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026144777</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV041169545 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:41:14Z |
institution | BVB |
isbn | 0470536748 9780470536742 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026144777 |
oclc_num | 859373940 |
open_access_boolean | |
owner | DE-29T DE-11 DE-83 |
owner_facet | DE-29T DE-11 DE-83 |
physical | XXI, 429 S. Ill., graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Wiley |
record_format | marc |
spelling | DeLancey, George 1940- Verfasser (DE-588)1042245436 aut Principles of chemical engineering practice George DeLancey Hoboken, NJ Wiley 2013 XXI, 429 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Verfahrenstechnik (DE-588)4062781-0 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Verfahrenstechnik (DE-588)4062781-0 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026144777&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | DeLancey, George 1940- Principles of chemical engineering practice Verfahrenstechnik (DE-588)4062781-0 gnd |
subject_GND | (DE-588)4062781-0 (DE-588)4123623-3 |
title | Principles of chemical engineering practice |
title_auth | Principles of chemical engineering practice |
title_exact_search | Principles of chemical engineering practice |
title_full | Principles of chemical engineering practice George DeLancey |
title_fullStr | Principles of chemical engineering practice George DeLancey |
title_full_unstemmed | Principles of chemical engineering practice George DeLancey |
title_short | Principles of chemical engineering practice |
title_sort | principles of chemical engineering practice |
topic | Verfahrenstechnik (DE-588)4062781-0 gnd |
topic_facet | Verfahrenstechnik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026144777&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT delanceygeorge principlesofchemicalengineeringpractice |