Molecular electronic-structure theory:
Ab initio quantum chemistry is increasingly paired with computational methods to solve intractable problems in chemistry and molecular physics. Now in a paperback edition, this comprehensive and technical work covers all the important aspects of modern molecular electronic-structure theory, clearly...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester
Wiley-Blackwell
2012
|
Ausgabe: | Reprinted as paperback |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | Ab initio quantum chemistry is increasingly paired with computational methods to solve intractable problems in chemistry and molecular physics. Now in a paperback edition, this comprehensive and technical work covers all the important aspects of modern molecular electronic-structure theory, clearly explaining quantum-mechanical methods and applications to molecular equilibrium structure, atomization energies, and reaction enthalpies. Extensive numerical examples illustrate each method described. An excellent resource.. |
Beschreibung: | XXVII, 908 S. graph. Darst. |
ISBN: | 9781118531471 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041159668 | ||
003 | DE-604 | ||
005 | 20190617 | ||
007 | t | ||
008 | 130722s2012 d||| |||| 00||| eng d | ||
020 | |a 9781118531471 |9 978-1-118-53147-1 | ||
035 | |a (OCoLC)842199345 | ||
035 | |a (DE-599)BVBBV041159668 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-188 |a DE-384 |a DE-29T |a DE-11 | ||
082 | 0 | |a 541.22 | |
084 | |a VE 5600 |0 (DE-625)147117:253 |2 rvk | ||
084 | |a VE 5300 |0 (DE-625)147116:253 |2 rvk | ||
084 | |a VE 5650 |0 (DE-625)147118:253 |2 rvk | ||
100 | 1 | |a Helgaker, Trygve |e Verfasser |4 aut | |
245 | 1 | 0 | |a Molecular electronic-structure theory |c Trygve Helgaker ; Poul Jørgensen ; Jeppe Olsen |
250 | |a Reprinted as paperback | ||
264 | 1 | |a Chichester |b Wiley-Blackwell |c 2012 | |
300 | |a XXVII, 908 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a Ab initio quantum chemistry is increasingly paired with computational methods to solve intractable problems in chemistry and molecular physics. Now in a paperback edition, this comprehensive and technical work covers all the important aspects of modern molecular electronic-structure theory, clearly explaining quantum-mechanical methods and applications to molecular equilibrium structure, atomization energies, and reaction enthalpies. Extensive numerical examples illustrate each method described. An excellent resource.. | ||
650 | 4 | |a Kemiske bindinger | |
650 | 0 | 7 | |a Molekülstruktur |0 (DE-588)4170383-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektronenstruktur |0 (DE-588)4129531-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ab-initio-Rechnung |0 (DE-588)4141062-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenchemie |0 (DE-588)4047979-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Molekülstruktur |0 (DE-588)4170383-2 |D s |
689 | 0 | 1 | |a Elektronenstruktur |0 (DE-588)4129531-6 |D s |
689 | 0 | 2 | |a Ab-initio-Rechnung |0 (DE-588)4141062-2 |D s |
689 | 0 | 3 | |a Quantenchemie |0 (DE-588)4047979-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Jørgensen, Poul |d 1944- |e Verfasser |0 (DE-588)131710974 |4 aut | |
700 | 1 | |a Olsen, Jeppe |e Verfasser |4 aut | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026134951&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-026134951 |
Datensatz im Suchindex
_version_ | 1804150565665505280 |
---|---|
adam_text | CONTENTS
Preface
Overview
Programs used in the preparation of this book
1 Second Quantization
The Fock space
Creation and annihilation operators
121 Creation operators
122 Annihilation operators
123 Anticommutation relations
Number-conserving operators
131 Occupation-number operators
132 The number operator
133 Excitation operators
The representation of one- and two-electron operators
141 One-electron operators
142 Two-electron operators
143 The molecular electronic Hamiltonian
Products of operators in second quantization
151 Operator products
152 The canonical commutators
First- and second-quantization operators compared
Density matrices
171 The one-electron density matrix
172 The two-electron density matrix
173 Density matrices in spin-orbital and coordinate representations
Commutators and anticommutators
Nonorthogonal spin orbitals
191 Creation and annihilation operators
192 One- and two-electron operators
193 Biorthogonal operators
References
Further reading
WOwoOATANAAA HR WN m
vi
CONTENTS
Exercises
Solutions
2 Spin in Second Quantization
2 1 Spin functions
2 2 Operators in the orbital basis
221 Spin-free operators
222 Spin operators
223 Mixed operators
2 3 Spin tensor operators
231 Spin tensor operators
232 Creation and annihilation operators
233 Two-body creation operators
234 Excitation operators
235 Singlet excitation operators
2 4 Spin properties of determinants
241 General considerations
242 Spin projection of determinants
243 Total spin of determinants
2 5 Configuration state functions
2 6 The genealogical coupling scheme
261 Representations of determinants and CSFs
262 Genealogical coupling
263 Coupling coefficients
264 An example: three electrons in three orbitals
265 Completeness and orthonormality
266 Transformations between determinant and CSF bases
267 Genealogical coupling of operators
2 7 Density matrices
271 Orbital-density matrices
272 Spin-density matrices
273 Density functions
References
Further reading
Exercises
Solutions
3 Orbital Rotations
3 1 Unitary transformations and matrix exponentials
311 Matrix exponentials
312 Exponential representations of unitary matrices
313 Special unitary matrices
314 Orthogonal matrices
315 Evaluation of matrix exponentials
316 Nonunitary transformations
4]
al
CONTENTS
Vii
3 2 Unitary spin-orbital transformations
321 Unitary matrix expansions of creation and annihilation operators
322 Exponential unitary transformations of the elementary operators
323 Exponential unitary transformations of states in Fock space
3 3 Symmetry-restricted unitary transformations
331 The need for symmetry restrictions
332 Symmetry restrictions in the spin-orbital basis
333 Symmetry restrictions in the orbital basis
3 4 The logarithmic matrix function
341 Definition of the logarithmic matrix function
342 Expansion of the logarithmic matrix function
343 Properties of the logarithmic matrix function
References
Further reading -
Exercises
Solutions
4 Exact and Approximate Wave Functions
4 1 Characteristics of the exact wave function
4 2 The variation principle
421 The variation principle
422 The variation method
423 Linear expansions and eigenvalue equations
424 Upper bounds and the Hylleraas—Undheim theorem
425 Nonlinear expansions
426 The Hellmann-Feynman theorem
427 The molecular electronic virial theorem
428 Variational reformulation of nonvariational energies
429 The variation principle summarized
4 3 Size-extensivity
431 Size-extensivity of exact wave functions
432 Size-extensivity of linear variational wave functions
433 Matrix representation of the noninteracting eigenvalue problem
434 Size-extensivity of exponential wave functions
4 4 Symmetry constraints
References
Further reading
Exercises
Solutions
5 The Standard Models
5 1 One- and N-electron expansions
52A model system: the hydrogen molecule in a minimal basis
521 One-electron basis
522 N-electron basis
viii
523 Density matrices and molecular integrals
524 Bonding and antibonding configurations
525 Superposition of configurations
526 Covalent and ionic states
527 Open-shell states
528 Electron correlation
529 The dissociation limit
5 2 10 Static and dynamical correlation
Exact wave functions in Fock space
531 Full configuration-interaction wave functions
532 The electronic ground state of the hydrogen molecule
533 The electronic ground state of the water molecule
The Hartree-Fock approximation
541 The Hartree-Fock model
542 The Fock operator and the canonical representation
543 Restricted and unrestricted Hartree-Fock theory
544 The correlation energy
545 The ground state of the hydrogen molecule
546 The bonded hydrogen molecule
547 The RHF dissociation of the hydrogen molecule
548 The UHF dissociation of the hydrogen molecule
549 The ground state of the water molecule
5 4 10 The dissociation of the water molecule
5 4 11 Final comments
Multiconfigurational self-consistent field theory
551 The multiconfigurational self-consistent field model
552 The ground state of the hydrogen molecule
553 The selection of MCSCF configuration spaces
554 The ground state of the water molecule
555 Final comments
Configuration-interaction theory
561 The configuration-interaction model
562 Single-reference CI wave functions
563 Multireference CI wave functions
564 Final comments
Coupled-cluster theory
571 The coupled-cluster model
572 The exponential ansatz of coupled-cluster theory
573 The ground state of the water molecule
574 The unrestricted coupled-cluster model
575 Approximate treatments of triple excitations
576 Final comments
Perturbation theory
581 Meller—Plesset perturbation theory
582 The ground state of the water molecule
583 Convergence of the Mgller—Plesset perturbation series
CONTENTS ‘
154 °
170 |
177 |
181°
CONTENTS ix
584 The ground state of the hydrogen molecule 194
585 Final comments 196
References 196
Further reading 196
Exercises 196
Solutions 198
6 Atomic Basis Functions 201
6 1 Requirements on one-electron basis functions 201
6 2 One- and many-centre expansions 203
6 3 The one-electron central-field system 204
6 4 The angular basis 207
641 The spherical harmonics 207
642 The solid harmonics 209
643 Explicit Cartesian expressions for the complex solid harmonics 210
644 Explicit Cartesian expressions for the real solid harmonics 214
645 Recurrence relations for the real solid harmonics 215
6 5 Exponential radial functions 218
651 The Laguerre polynomials 219
652 The hydrogenic functions 221
653 The Laguerre functions 222
654 The carbon orbitals expanded in Laguerre functions 223
655 The nodeless Slater-type orbitals 225
656 STOs with variable exponents 226
657 STO basis sets 227
6 6 Gaussian radial functions 229
661 The harmonic-oscillator functions in polar coordinates 230
662 The carbon orbitals expanded in HO functions 231
663 The nodeless Gaussian-type orbitals 232
664 The GTOs with variable exponents 233
665 The carbon orbitals expanded in GTOs 235
666 The HO functions in Cartesian coordinates 236
667 The Cartesian GTOs 237
References 238
Further reading 239
Exercises 239
Solutions 245
7 Short-Range Interactions and Orbital Expansions 256
7 1 The Coulomb hole 256
7 2 The Coulomb cusp 259
7 3 Approximate treatments of the ground-state helium atom 262
731 Configuration-interaction expansions 262
732 Correlating functions and explicitly correlated methods 264
CONTENTS j
733 The Hylleraas function
734 Conclusions
The partial-wave expansion of the ground-state helium atom
741 Partial-wave expansion of the interelectronic distance
742 Partial-wave expansion of the wave function
743 The asymptotic convergence of the partial-wave expansion
744 The truncation error of the partial-wave expansion
The principal expansion of the ground-state helium atom
751 The principal expansion and its asymptotic convergence
752 Comparison of the partial-wave and principal expansions
753 The Coulomb hole in the principal expansion
754 Conclusions
Electron-correlation effects summarized
References
Further reading
Exercises
Solutions
8 Gaussian Basis Sets
Gaussian basis functions
8 2 Gaussian basis sets for Hartree—Fock calculations
821 STO-kG basis sets
822 Primitive expansions of Hartree—Fock orbitals
823 Even-tempered basis sets
824 Contracted Gaussians
825 Segmented contractions
826 Simultaneous optimization of exponents and coefficients
827 Polarization functions
Gaussian basis sets for correlated calculations
831 Core and valence correlation energies
832 Atomic natural orbitals
833 Correlation-consistent basis sets
834 Extended correlation-consistent basis sets
Basis-set convergence
841 Basis-set convergence of the Hartree~Fock model
842 Basis-set convergence of correlated models
843 The asymptotic convergence of the correlation energy
844 Basis-set convergence of the binding energy
Basis-set superposition error
851 Basis-set superposition error and
852 BSSE in the neon dimer
853 BSSE in the water dimer
854 BSSE in the BH molecule
855 Summary
the counterpoise correction
270 |
297 |
322 °
327 -
334°
CONTENTS xi
References 335
Further reading 335
9 Molecular Integral Evaluation 336
9 1 Contracted spherical-harmonic Gaussians 336
911 Primitive Cartesian GTOs 336
912 Spherical-harmonic GTOs 337
913 Contracted GTOs 338
914 Computational considerations 338
9 2 Cartesian Gaussians 339
921 Cartesian Gaussians 339
922 Recurrence relations for Cartesian Gaussians 340
923 The Gaussian product rule 341
924 Gaussian overlap distributions 341
925 Properties of Gaussian overlap distributions 343
926 Integrals over spherical overlap distributions 344
9 3 The Obara-Saika scheme for simple integrals 344
931 Overlap integrals 345
932 Multipole-moment integrals 346
933 Integrals over differential operators 347
934 Momentum and kinetic-energy integrals 348
9 4 Hermite Gaussians 349
941 Hermite Gaussians 349
942 Derivative and recurrence relations for Hermite Gaussians 350
943 Integrals over Hermite Gaussians 351
944 Hermite Gaussians and HO functions compared 352
9 5 The McMurchie-Davidson scheme for simple integrals 352
951 Overlap distributions expanded in Hermite Gaussians 353
952 Overlap distributions from Hermite Gaussians by recursion 355
953 The McMurchie-Davidson scheme for multipole-moment integrals 356
9 6 Gaussian quadrature for simple integrals 357
961 Orthogonal polynomials 358
962 Gaussian quadrature 359
963 Proof of the Gaussian-quadrature formula 360
964 Gauss-Hermite quadrature for simple integrals 361
9 7 Coulomb integrals over spherical Gaussians 361
971 Spherical Gaussian charge distributions 361
972 The potential from a spherical Gaussian charge distribution 362
973 The repulsion between spherical Gaussian charge distributions 363
974 The electrostatics of spherical Gaussian distributions 364
9 8 The Boys function 365
981 The Boys function 365
982 Evaluation of the Boys function 366
983 The incomplete gamma function 368
xii
984 The error function
985 The complementary error function
986 The confluent hypergeometric function
The McMurchie-Davidson scheme for Coulomb integrals
991 Hermite Coulomb integrals
992 The evaluation of Hermite Coulomb integrals
993 Cartesian Coulomb integrals by Hermite expansion
994 Cartesian Coulomb integrals by Hermite recursion
995 Computational considerations for the one-electron integrals
996 Computational considerations for the two-electron integrals
The Obara—Saika scheme for Coulomb integrals
9 10 1 The Obara—Saika scheme for one-electron Coulomb integrals
9 10 2 The Obara—Saika scheme for two-electron Coulomb integrals
9 10 3 The electron-transfer and horizontal recurrence relations
9 10 4 Computational considerations for the two-electron integrals
Rys quadrature for Coulomb integrals
9 11 1 Motivation for the Gaussian-quadrature scheme
9 11 2 Gaussian quadrature for even polynomials and weight functions
9 11 3 Rys polynomials and Gauss—Rys quadrature
9 11 4 The Rys scheme for Hermite Coulomb integrals
9 11 5 The Rys scheme for Cartesian Coulomb integrals
9 11 6 Obara—Saika recursion for the two-dimensional Rys integrals
9 11 7 Computational considerations for the two-electron integrals
Scaling properties of the molecular integrals
9 12 1 Linear scaling of the overlap and kinetic-energy integrals
9 12 2 Quadratic scaling of the Coulomb integrals
9 12 3 Linear scaling of the nonclassical Coulomb integrals
9 12 4 The Schwarz inequality
The multipole method for Coulomb integrals
9 13 1 The multipole method for primitive two-electron integrals
9 13 2 Convergence of the multipole expansion
9 13 3 The multipole method for contracted two-electron integrals
9 13 4 Translation of multipole moments
9 13 5 Real multipole moments
9 13 6 The real translation matrix
9 13 7 The real interaction matrix
9 13 8 Evaluation of the scaled solid harmonics
The multipole method for large systems
9 14 1 The naive multipole method
9 14 2 The two-level multipole method
9 14 3 The fast multipole method
9 14 4 The continuous fast multipole method
References
Further reading
Exercises
Solutions
CONTENTS
xiii
10 Hartree-Fock Theory
Parametrization of the wave function and the energy
10 1 1 Singlet and triplet CSFs
10 1 2 Orbital rotations
10 1 3 Expansion of the energy
The Hartree-Fock wave function
10 2 1 The Hartree-Fock wave function
10 2 2 Redundant parameters
10 2 3 The Brillouin theorem
10 2 4 Size-extensivity
Canonical Hartree—Fock theory
10 3 1 The Fock operator
10 3 2 Identification of the elements of the Fock operator
10 3 3 The Fock matrix
10 3 4 The self-consistent field method
10 3 5 The variational and canonical conditions compared
The RHF total energy and orbital energies
10 4 1 The Hamiltonian and the Fock operator
10 4 2 The canonical representation and orbital energies
10 4 3 The Hartree-Fock energy
10 4 4 Hund’s rule for singlet and triplet states
10 4 5 The fluctuation potential
Koopmans’ theorem
10 5 1 Koopmans’ theorem for ionization potentials
10 5 2 Koopmans’ theorem for electron affinities
10 5 3 Ionization potentials of H2O and N2
The Roothaan—Hall self-consistent field equations
10 6 1 The Roothaan—Hall equations
10 6 2 DIIS convergence acceleration
10 6 3 Integral-direct Hartree—Fock theory
Density-based Hartree—Fock theory
10 7 1 Density-matrix formulation of Hartree—Fock theory
10 7 2 Properties of the MO density matrix
10 7 3 Properties of the AO density matrix
10 7 4 Exponential parametrization of the AO density matrix
10 7 5 The redundancy of the exponential parametrization
10 7 6 Purification of the density matrix
10 7 7 Convergence of the purification scheme
10 7 3 The Hartree—Fock energy and the variational conditions
10 7 9 The density-based SCF method
10 7 10 Optimization of the SCF orbital-energy function
10 7 11 Linear scaling of the density-based SCF scheme
10 8 Second-order optimization
10 8 1 Newton’s method
10 8 2 Density-based formulation of Newton’s method
10 8 3 The electronic gradient in orbital-based Hartree—Fock theory
44]
11
10 8 4 The inactive and active Fock matrices
10 8 5 Computational cost for the calculation of the Fock matrix
10 8 6 The electronic Hessian in orbital-based Hartree—Fock theory
10 8 7 Linear transformations in the MO basis
10 8 8 Linear transformations in the AO basis
The SCF method as an approximate second-order method
10 9 1 The GBT vector
10 9 2 The Fock operator
10 9 3 Identification from the gradient
10 9 4 Identification from the Hessian
10 9 5 Convergence rates
10 9 6 The SCF and Newton methods compared
10 10 Singlet and triplet instabilities in RHF theory
10 10 1 Orbital-rotation operators in RHF and UHF theories
10 10 2 RHF instabilities for nondegenerate electronic states
10 10 3 RHF energies of degenerate electronic states
10 10 4 Triplet instabilities in Hz
10 10 5 Triplet instabilities in H O
10 10 6 Singlet instabilities in the allyl radical
10 11 Multiple solutions in Hartree-Fock theory
References
Further reading
Exercises
Solutions
Configuration-Interaction Theory
IL
The CI model
11 1 1 The CI model
11 1 2 Full CI wave functions
11 1 3 Truncated CI wave functions: CAS and RAS expansions
Size-extensivity and the CI model
11 2 1 FCI wave functions
11 2 2 Truncated CI wave functions
11 2 3 The Davidson correction
11 24 A numerical study of size-extensivity
A CI model system for noninteracting hydrogen molecules
11 3 1 The CID wave function and energy
11 3 2 The Davidson correction
11 3 3 The CID one-electron density matrix
11,34 The FCI distribution of excitation levels
Parametrization of the CI model
11 4 1 The CI expansion
11 4 2 The CI energy
Optimization of the CI wave function
11 5 1 The Newton step
11 5 2 Convergence rate of Newton’s method for the CI energy
CONTENTS
482 |
484 |
496 |
496 |
500 |
530 °
535
538
540 -
545°
CONTENTS XV
11 5 3 Approximate Newton schemes 547
11 5 4 Convergence rate of quasi-Newton schemes for the CI energy 548
11 6 Slater determinants as products of alpha and beta strings 550
11 7 The determinantal representation of the Hamiltonian operator 552
11 8 Direct CI methods 354
11 8 1 General considerations 554
11 8 2 Ordering and addressing of spin strings 555
11 8 3 The N-resolution method 558
11 8 4 The minimal operation-count method 560
11 8 5 Direct CI algorithms for RAS calculations 564
11 8 6 Simplifications for wave functions of zero projected spin 567
11 8 7 Density matrices 568
11 9 CI orbital transformations 569
11 10 Symmetry-broken CI solutions 573
References 574
Further reading 575
Exercises 575
Solutions 583
12 Multiconfigurational Self-Consistent Field Theory 598
12 1 The MCSCF model 598
12 2 The MCSCF energy and wave function 600
12 2 1 The parametrization of the MCSCF state 600
12 2 2 The Taylor expansion of the MCSCF energy 601
12 2 3 The MCSCF electronic gradient and Hessian 603
12 2 4 Invariance of the second-order MCSCF energy 604
12 2 5 Rank-I contributions to the MCSCF electronic Hessian 604
12 2 6 Redundant orbital rotations 605
12 2 7 The MCSCF electronic gradient at stationary points 608
12 2 8 The MCSCF electronic Hessian at stationary points 609
12 3 The MCSCF Newton trust-region method 610
12 3 1 The Newton step 610
12 3 2 The level-shifted Newton step 6ll
12 3 3 The level-shift parameter 612
12 3 4 Step control for ground states 614
12 3 5 Step control for excited states 614
12 3 6 Trust-radius update schemes 615
12 4 The Newton eigenvector method 616
12 4 1 The MCSCF eigenvalue problem 616
12 4 2 The Newton eigenvector method 617
12 4 3 Norm-extended optimization 619
12 4 4 The augmented-Hessian method 620
12 5 Computational considerations 621
12 5 1 The MCSCF electronic gradient 622
12 5 2 MCSCF Hessian transformations 623
12 5 3 Inner and outer iterations
CONTENTS
Xvi
12 5 4 The structure of the MCSCF electronic Hessian 626;
12 5 5 Examples of MCSCF optimizations 628;
12 6 Exponential parametrization of the configuration space 630;
12 6 1 General exponential parametrization of the configuration space 630
12 6 2 Exponential parametrization for a single reference state 631
12 63A basis for the orthogonal complement to the reference state 633
12 6 4 Exponential parametrization for several reference states 634
12 7 MCSCF theory for several electronic states 637
12 7 1 Separate optimization of the individual states 637
12 7 2 State-averaged MCSCF theory 638 !
12 8 Removal of RHF instabilities in MCSCF theory
12 8 1 Bond breaking in H,O
12 8 2 The ground state of the allyl radical
References
Further reading
Exercises 643 i
Solutions 645 |
13 Coupled-Cluster Theory 648
13 1 The coupled-cluster model 648 i
13 1 1 Pair clusters 649 5
13 1 2 The coupled-cluster wave function 650 |
13 1 3 Connected and disconnected clusters 650 |
13 1 4 The coupled-cluster Schrödinger equation 651
13 2 The coupled-cluster exponential ansatz 654 |;
13 2 1 The exponential ansatz 654
13 2 2 The coupled-cluster hierarchy of excitation levels 654
13 2 3 The projected coupled-cluster equations 657
13 2 4 The coupled-cluster energy 660 :
13 2 5 The coupled-cluster amplitude equations 660 -
13 2 6 Coupled-cluster theory in the canonical representation 662°
13 2 7 Comparison of the CI and coupled-cluster hierarchies 662
13 2 8 Cluster-commutation conditions and operator ranks 663 :
13 3 Size-extensivity in coupled-cluster theory 665
13 3 1 Size-extensivity in linked coupled-cluster theory 665
13 3 2 Termwise size-extensivity 667-
13 3 3 Size-extensivity in unlinked coupled-cluster theory 668,
13 34A numerical study of size-extensivity 669:
13 4 Coupled-cluster optimization techniques
13 4 1 Newton’s method 671:
13 4 2 The perturbation-based quasi-Newton method 672
13 4 3 DIIS acceleration of the quasi-Newton method 672
13 4 4 Examples of coupled-cluster optimizations 673 -
CONTENTS XVii
13 5 The coupled-cluster variational Lagrangian 674
13 5 1 The coupled-cluster Lagrangian 674
13 5 2 The Hellmann—Feynman theorem 675
13 5 3 Lagrangian density matrices 676
13 6 The equation-of-motion coupled-cluster method 677
13 6 1 The equation-of-motion coupled-cluster model 677
13 6 2 The EOM-CC eigenvalue problem 679
13 6 3 The similarity-transformed Hamiltonian and the Jacobian 680
13 6 4 Solution of the EOM-CC eigenvalue problem 681
13 6 5 Size-extensivity of the EOM-CC energies 683
13 6 6 Final comments 684
13 7 The closed-shell CCSD model 685
13 7 1 Parametrization of the CCSD cluster operator 685
13 7 2 The CCSD energy expression 686
13 7 3 The Tl-transformed Hamiltonian 687
13 7 4 The Ti-transformed integrals 690
13 7 5 Representation of the CCSD projection manifold 691
13 7 6 The norm of the CCSD wave function 692
13 7 7 The CCSD singles projection 693
13 7 8 The CCSD doubles projection 695
13 7 9 Computational considerations 697
13 8 Special treatments of coupled-cluster theory 698
13 8 1 Orbital-optimized and Brueckner coupled-cluster theories 698
13 8 2 Quadratic configuration-interaction theory 702
13 9 High-spin open-shell coupled-cluster theory 704
13 9 1 Spin-restricted coupled-cluster theory 704
13 9 2 Total spin of the spin-restricted coupled-cluster wave function 707
13 9 3 The projection manifold in spin-restricted theory 708
13 9 4 Spin-adapted CCSD theory 709
References 711
Further reading 712
Exercises 712
Solutions 717
14 Perturbation Theory 724
14 1 Rayleigh-Schrödinger perturbation theory 725
14 1 1 RSPT energies and wave functions 726
14 1 2 Wigner’s 2n + 1 rule 728
14 1 3 The Hylleraas functional 734
14 1 4 Size-extensivity in RSPT 736
14 2 M@gller—Plesset perturbation theory 739
14 2 1 The zero-order MPPT system 740
14 2 2 The MPI wave function 741
xvili
CONTENTS
14 2 3 The MP2 wave function
14 2 4 The Maller—Plesset energies
14 2 5 Explicit expressions for MPPT wave functions and energies
14 2 6 Size-extensivity in MgHer—Plesset theory
Coupled-cluster perturbation theory
14 3 1 The similarity-transformed exponential ansatz of CCPT
14 3 2 The CCPT amplitude equations
14 3 3 The CCPT wave functions
14 3 4 The CCPT energies
14 3 5 Size-extensivity in CCPT
14 3 6 The CCPT Lagrangian
14 3 7 The CCPT variational equations
14 3 3 CCPT energies that obey the 2n + 1 rule
14 3 9 Size-extensivity of the CCPT Lagrangian
Mgller—Plesset theory for closed-shell systems
14 4 1 The closed-shell zero-order system
14 4 2 The closed-shell variational Lagrangian
14 4 3 The closed-shell wave-function corrections
14 4 4 The closed-shell energy corrections
Convergence in perturbation theory
14 51A two-state model
14 5 2 Conditions for convergence
14 5 3 Intruders in the general two-state model
14 5 4 Prototypical intruders
14 5 5 Convergence of the Mdller—Plesset series
14 5 6 Analytic continuation
Perturbative treatments of coupled-cluster wave functions
14 6 1 Perturbation analysis of the coupled-cluster hierarchy
14 6 2 Iterative hybrid methods
14 6 3 Noniterative hybrid methods: the CCSD(T) model
14 6 4 Hybrid and nonhybrid methods compared
Multiconfigurational perturbation theory
14 7 1 The zero-order CASPT Hamiltonian
14 7 2 Size-extensivity in CASPT
14 7 3 The CASPT wave function and energy
14 74 Sample CASPT calculations
References
Further reading
Exercises
Solutions
15 Calibration of the Electronic-Structure Models
15 1 The sample molecules
15 2 Errors in quantum-chemical calculations
15 2 1 Apparent and intrinsic errors
15 2 2 Statistical measures of errors
746 |
752 |
754 |
756°
758
761 |
TIL:
804 -
u rare
809 |
CONTENTS xix
15 3 Molecular equilibrium structures: bond distances 821
15 3 1 Experimental bond distances 822
15 3 2 Mean errors and standard deviations 822
15 3 3 Normal distributions 825
15 3 4 Mean absolute deviations 825
15 3 5 Maximum errors 827
15 3 6 The CCSDT and CCSD(T) models 827
15 3 7 The effect of core correlation on bond distances 828
15 3 8 Trends in the convergence towards experiment 829
15 3 9 Summary 831
15 4 Molecular equilibrium structures: bond angles 832
15 4 1 Experimental bond angles 832
15 4 2 Calculated bond angles 833
15 4 3 Summary 834
15 5 Molecular dipole moments 836
15 5 1 Experimental dipole moments 836
15 5 2 Calculated dipole moments 837
15 5 3 Predicted dipole moments 838
15 5 4 Analysis of the calculated dipole moments 839
15 5 5 Summary 840
15 6 Molecular and atomic energies 840
15 6 1 The total electronic energy 841
15 6 2 Contributions to the total electronic energy 842
15 6 3 Basis-set convergence 844
15 6 4 CCSDT corrections 846
15 6 5 Molecular vibrational corrections 847
15 6 6 Relativistic corrections 849
15 6 7 Summary 853
15 7 Atomization energies 854
15 7 1 Experimental atomization energies 854
15 7 2 Statistical analysis of atomization energies 855
15 7 3 Extrapolation of atomization energies 858
15 7 4 Core contributions to atomization energies 861
15 7 5 CCSDT corrections 863
15 7 6 Summary 864
15 8 Reaction enthalpies 865
15 8 1 Experimental reaction enthalpies 865
15 8 2 Statistical analysis of reaction enthalpies 867
15 8 3 Extrapolation and convergence to the basis-set limit 870
15 8 4 Core contributions to reaction enthalpies 871
15 8 5 Summary 873
15 9 Conformational barriers 874
15 9 1 The barrier to linearity of water 875
15 9 2 The inversion barrier of ammonia 876
15 9 3 The torsional barrier of ethane 877
15 9 4 Summary 879
15 10 Conclusions 879
XX
CONTENTS |
References
Further reading
Exercises
Solutions
List of Acronyms
Index
882 |
882 |
882 °
883 |
885 |
887 |
|
any_adam_object | 1 |
author | Helgaker, Trygve Jørgensen, Poul 1944- Olsen, Jeppe |
author_GND | (DE-588)131710974 |
author_facet | Helgaker, Trygve Jørgensen, Poul 1944- Olsen, Jeppe |
author_role | aut aut aut |
author_sort | Helgaker, Trygve |
author_variant | t h th p j pj j o jo |
building | Verbundindex |
bvnumber | BV041159668 |
classification_rvk | VE 5600 VE 5300 VE 5650 |
ctrlnum | (OCoLC)842199345 (DE-599)BVBBV041159668 |
dewey-full | 541.22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541.22 |
dewey-search | 541.22 |
dewey-sort | 3541.22 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
edition | Reprinted as paperback |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02442nam a2200481 c 4500</leader><controlfield tag="001">BV041159668</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190617 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130722s2012 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118531471</subfield><subfield code="9">978-1-118-53147-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)842199345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041159668</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541.22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5600</subfield><subfield code="0">(DE-625)147117:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5300</subfield><subfield code="0">(DE-625)147116:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5650</subfield><subfield code="0">(DE-625)147118:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Helgaker, Trygve</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular electronic-structure theory</subfield><subfield code="c">Trygve Helgaker ; Poul Jørgensen ; Jeppe Olsen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Reprinted as paperback</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley-Blackwell</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 908 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ab initio quantum chemistry is increasingly paired with computational methods to solve intractable problems in chemistry and molecular physics. Now in a paperback edition, this comprehensive and technical work covers all the important aspects of modern molecular electronic-structure theory, clearly explaining quantum-mechanical methods and applications to molecular equilibrium structure, atomization energies, and reaction enthalpies. Extensive numerical examples illustrate each method described. An excellent resource..</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kemiske bindinger</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekülstruktur</subfield><subfield code="0">(DE-588)4170383-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronenstruktur</subfield><subfield code="0">(DE-588)4129531-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ab-initio-Rechnung</subfield><subfield code="0">(DE-588)4141062-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Molekülstruktur</subfield><subfield code="0">(DE-588)4170383-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elektronenstruktur</subfield><subfield code="0">(DE-588)4129531-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Ab-initio-Rechnung</subfield><subfield code="0">(DE-588)4141062-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jørgensen, Poul</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131710974</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olsen, Jeppe</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026134951&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026134951</subfield></datafield></record></collection> |
id | DE-604.BV041159668 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:40:57Z |
institution | BVB |
isbn | 9781118531471 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026134951 |
oclc_num | 842199345 |
open_access_boolean | |
owner | DE-188 DE-384 DE-29T DE-11 |
owner_facet | DE-188 DE-384 DE-29T DE-11 |
physical | XXVII, 908 S. graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Wiley-Blackwell |
record_format | marc |
spelling | Helgaker, Trygve Verfasser aut Molecular electronic-structure theory Trygve Helgaker ; Poul Jørgensen ; Jeppe Olsen Reprinted as paperback Chichester Wiley-Blackwell 2012 XXVII, 908 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Ab initio quantum chemistry is increasingly paired with computational methods to solve intractable problems in chemistry and molecular physics. Now in a paperback edition, this comprehensive and technical work covers all the important aspects of modern molecular electronic-structure theory, clearly explaining quantum-mechanical methods and applications to molecular equilibrium structure, atomization energies, and reaction enthalpies. Extensive numerical examples illustrate each method described. An excellent resource.. Kemiske bindinger Molekülstruktur (DE-588)4170383-2 gnd rswk-swf Elektronenstruktur (DE-588)4129531-6 gnd rswk-swf Ab-initio-Rechnung (DE-588)4141062-2 gnd rswk-swf Quantenchemie (DE-588)4047979-1 gnd rswk-swf Molekülstruktur (DE-588)4170383-2 s Elektronenstruktur (DE-588)4129531-6 s Ab-initio-Rechnung (DE-588)4141062-2 s Quantenchemie (DE-588)4047979-1 s DE-604 Jørgensen, Poul 1944- Verfasser (DE-588)131710974 aut Olsen, Jeppe Verfasser aut HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026134951&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Helgaker, Trygve Jørgensen, Poul 1944- Olsen, Jeppe Molecular electronic-structure theory Kemiske bindinger Molekülstruktur (DE-588)4170383-2 gnd Elektronenstruktur (DE-588)4129531-6 gnd Ab-initio-Rechnung (DE-588)4141062-2 gnd Quantenchemie (DE-588)4047979-1 gnd |
subject_GND | (DE-588)4170383-2 (DE-588)4129531-6 (DE-588)4141062-2 (DE-588)4047979-1 |
title | Molecular electronic-structure theory |
title_auth | Molecular electronic-structure theory |
title_exact_search | Molecular electronic-structure theory |
title_full | Molecular electronic-structure theory Trygve Helgaker ; Poul Jørgensen ; Jeppe Olsen |
title_fullStr | Molecular electronic-structure theory Trygve Helgaker ; Poul Jørgensen ; Jeppe Olsen |
title_full_unstemmed | Molecular electronic-structure theory Trygve Helgaker ; Poul Jørgensen ; Jeppe Olsen |
title_short | Molecular electronic-structure theory |
title_sort | molecular electronic structure theory |
topic | Kemiske bindinger Molekülstruktur (DE-588)4170383-2 gnd Elektronenstruktur (DE-588)4129531-6 gnd Ab-initio-Rechnung (DE-588)4141062-2 gnd Quantenchemie (DE-588)4047979-1 gnd |
topic_facet | Kemiske bindinger Molekülstruktur Elektronenstruktur Ab-initio-Rechnung Quantenchemie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026134951&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT helgakertrygve molecularelectronicstructuretheory AT jørgensenpoul molecularelectronicstructuretheory AT olsenjeppe molecularelectronicstructuretheory |