Scanning transmission electron microscopy of nanomaterials: basics of imaging and analysis
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
2015
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XLIV, 571 S. Ill., graph. Darst. |
ISBN: | 9781848167896 184816789X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041154239 | ||
003 | DE-604 | ||
005 | 20150320 | ||
007 | t | ||
008 | 130718s2015 ad|| |||| 00||| eng d | ||
020 | |a 9781848167896 |9 978-1-84816-789-6 | ||
020 | |a 184816789X |9 1-84816-789-X | ||
035 | |a (OCoLC)904260276 | ||
035 | |a (DE-599)BVBBV041154239 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
245 | 1 | 0 | |a Scanning transmission electron microscopy of nanomaterials |b basics of imaging and analysis |c ed. Nobuo Tanaka |
264 | 1 | |a London |b Imperial College Press |c 2015 | |
300 | |a XLIV, 571 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Raster-Transmissions-Elektronenmikroskopie |0 (DE-588)4320991-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Raster-Transmissions-Elektronenmikroskopie |0 (DE-588)4320991-9 |D s |
689 | 0 | 1 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Tanaka, Nobuo |d 1949- |e Sonstige |0 (DE-588)1063671906 |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026129647&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026129647&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-026129647 |
Datensatz im Suchindex
_version_ | 1804150557755047936 |
---|---|
adam_text | Contents
Preface v
Acknowledgments
vii
List of Contributors
xxiii
List of Abbreviations
xxv
List of Symbols
xxix
For Students and Beginners
xxxv
Softwares for Simulation
xxxvii
Table of Values of Related Physical Constants
xli
Table of Electron Wavelength
xliii
1.
Introduction
1
N.
Tanaka
1.1
Need for electron nanoprobe imaging
1
1.2
Comparison of
TEM, SEM,
and STEM
2
1.3
Advantages of STEM
5
1.4
Application possibilities of STEM
5
1.5
Brief introduction to the chapters in this book
6
References
7
2.
Historical Survey of the Development of STEM Instruments
9
N.
Tanaka
2.1
STEM from the
1930s
to the
1960s 9
2.2
Crewes STEM
10
2.3
Crewe s high-voltage STEM with aberration correction
14
2.4
The STEMs of Strojnik,
Le
Poo
le,
and Jouffrey
15
2.5
Vacuum Generators1 STEM
17
2.6
Cowley s HB-5 STEM
18
2.7
Hitachi STEM
20
Contents
2.8
The Cavendish
НВ-5
STEM
21
2.9
The Cornell STEM
21
2.10
The Oak Ridge HB-501 STEM
22
2.11
The IBM STEM
22
2.12
Hitachi HD-2000 STEM
23
2.13
Křivánek
s
aberration corrector
23
2.14
The IBM and Oak Ridge HB-501 STEM with
aberration corrector
23
2.15
The Oak Ridge
300
kV
STEM with aberration corrector
25
2.16
The Daresbury STEM
25
2.17
The
200
kV
TEM-based STEM by JEOL and
FEI 25
2.18
The Oxford and Nagoya double-corrected STEM
27
2.19
The
300
k V
STEM at
Julien
and Berkeley
27
2.20
The Japanese aberration corrector for
200
kV
STEM
29
2.21
The advanced aberration-corrected
ТЕМ
/STEM by JEOL
30
2.22
The
300
kV
ТЕМ
/STEM in the R005 project
31
2.23
Hitachi aberration-corrected STEM
32
2.24
The
200
kV
dedicated STEM by NION
32
2.25
The Japanese national project TEM/STEM
for lower voltages
32
2.26
High-voltage environmental STEM in Nagoya University
33
References
34
PART
1:
BASIC KNOWLEDGE OF STEM
3.
Basics of STEM
41
N.
Tanaka and K. Saitoh
3.1
Basic knowledge of imaging by electrons
41
3.2
Basic features of STEM imaging
45
3.3
Fine electron probe formation in geometrical optics
47
3.4
Wave optics for focusing by a convex lens and its
wave aberration
50
3.5
Basic design of STEM and its components
55
3.6
Incoherent imaging in ADF-STEM
60
3.6.1
Cowley s explanation
61
3.6.2
Nellist s explanation
63
Contents
3.7
Reciprocity between STEM and
ТЕМ
65
3.8
Imaging modes of STEM
67
3.9
Various kinds of image contrast in STEM and their theories
69
3.9.1
Bright field contrast and lattice images with phase
contrast
69
3.9.2
Crewe s Z-contrast and its elemental mapping
70
3.9.3
Pennycook s Z2~x contrast in ADF-STEM
72
3.9.4
Depth-sectioning images in STEM
75
3.9.5
ABF-STEM
76
3.9.6
EELS and EDX elemental mapping in STEM
77
3.9.7
Secondary electron imaging in STEM
81
3.9.8
Scanning confocal electron microscopy
(SCEM)
81
3.10
Prototypes of STEM
82
3.11
Calculation of STEM image intensity
83
3.11.1
Cowley—Moodie method
84
3.11.2
Bethe method
91
Supplement: Basic knowledge of electron diffraction and
convergent-beam electron diffraction
92
5.1 Kinematical theory of electron diffraction
93
5.2 Convergent-beam electron diffraction
98
References
103
4.
Application of STEM to Nanomaterials and
Biological Specimens
109
N.
Shibata,
S.D.
Findlay, Y.
/kuhara
and
N.
Тапака
4.1
Single crystal imaging by STEM
109
4.1.1
Direct imaging of complex crystals
109
4.1.2
Direct dopant imaging in single crystals
112
4.1.3
Light element imaging
116
4.2
Interface characterization by STEM
120
4.2.1
Interfaces studied by ADF-STEM
120
4.2.2
Interface basics: General concepts
121
4.2.2.1
Grain boundary character
121
4.2.2.2
Coincidence site lattice theory and the
structure unit
122
4.2.3
Materials interfaces
124
— xi —
Contents
4.2.3.1
Grain boundaries in ceramic materials
124
4.2.3.2
Grain boundary characterization of sil¬
icon nitride ceramics
124
4.2.3.3
Grain boundary characterization in
alumina ceramics
126
4.23
Л
Grain boundary characterization in
4.2.4
metals
132
Hetero
interfaces
134
4.2.4.1
Importance of
hetero
interfaces
134
4.2.4.2
SÌ-SÌO2
crystalline-amorphous
interfaces
134
4.2.4.3
Silicon-silicide
hetero
interfaces
135
4.2.4.4
Au—
ТІО2
heterogeneous catalysis
interfaces
137
4.2.4.5
Superlattices
142
Quanti
fication of STEM images of interfaces
146
4.2.5
4.2.5.1
Quantitative structural analysis of a
twin boundary in
а^^БЬгОіг
146
4.2.5.2
Compositional analysis at an interface
in a superlattice
146
4.2.5.3
Absolute scale intensity measure¬
ments and compositional analysis in
AUGai_xN/GaN
149
4.2.5.4
A model-based method for
quantification
149
4.2.6
Summary of studies on single crystals and
interfaces
151
4.3
Imaging of atoms and clusters by STEM
152
4.3.1
Isolated single atoms
152
4.3.2
Small particles
154
4.3.3
Gold clusters embedded in MgO
154
4.3.4
Carbon nanotubes
154
4.3.5
Vanadium clusters in Si—V alloys
155
4.3.6
Partially ordered
Ni—
Mo and
Au—Ge
alloys
157
4.3.7
Metal atoms in carbon nanotubes
158
4.3.8
Cobalt clusters in amorphous
А12Оз
158
4.3.9
Antimony atoms in silicon
159
— xii —
Contents
4.3.10
Gold clusters on an amorphous carbon film and
their movement
161
4.3.11
Series of contrast of single atoms such as
Au, Ag,
Ge, Cu,
and Si in ADF-STEM
161
4.3.12
Observation
of
arsenic
atoms in silicon crystals
161
4.3.13
Platinum clusters on amorphous carbon films in
a fuel cell
162
4.4
Biological specimens imaged by STEM
163
4.4.1 DNA 163
4.4.2 Ferritin
and tobacco mosaic virus
164
4.4.3
Organic molecules
165
4.4.4
STEM observation of cells and
organdíes
with
EELS
165
4.4.5
Recent trial for low-dose STEM imaging
168
References
169
PART
2:
THEORIES OF STEM IMAGING
5.
Theory for HAADF-STEM and its Image Simulation
179
K. Watanabe
5
Λ
Wave functions of electron probe
179
5.1.1
Convergent probe intensity
180
5.1.2
Contrast transfer function
181
5.1.3
Chromatic aberration
183
5.1.4
Spatial incoherence
185
5.1.5
Channeling of the convergent electron probe
185
5.2
High-angle electron scattering
188
5.2.1
Crystal potential
188
5.2.2
Imaginary potential (Yoshioka term)
191
5.2.3
Imaginary potential for thermal diffuse scattering
193
5.3
Formulations for dynamical diffraction in STEM imaging
196
5.3.1
Bloch wave method
197
5.4
Formulations for inelastic scattering of electrons in STEM
imaging
203
5.4.1
String model
204
5.4.2
Cross-section expression
205
— xiii —
Contents
5.4.3
Imaginary potential method for crystal diffrac¬
tion in STEM imaging
207
5.4.4
Combining with the layer-by-layer method
208
5.4.5
Non-locality in HAADF-STEM images
210
5.5
Examples of simulated HAADF-STEM images
211
5.5.1
Semi-quantitative comparison between experi¬
mental Cj-unconnected HAADF-STEM images
and simulations
211
5.5.2
Semi-quantitative comparison between experi¬
mental
C s
-corrected HAADF-STEM images and
simulations
213
References
215
6.
Theory for Annular Bright Field STEM Imaging
217
S.D.
Fifidlay,
N.
Shibata and Y.
¡kuhara
6.1
Overview
217
6.2
What is annular bright field STEM?
218
6.3
Comparison between bright field, annular bright field, and
annular dark field STEM
218
6.4
Theory of image formation in annular bright field STEM
219
6.4.1
Precedents
219
6.4.2
S-state model description
220
6.4.3
Limitations of the s-state model
224
6.5
Conceptual picture
226
6.6
Discussion and summary
227
References
229
7.
Electron Energy-Loss Spectroscopy in STEM and its Imaging
231
K. Kimoto
1.1
Brief introduction to EELS
231
7.2
Combination of EELS and electron microscopy
233
7.3
Instrumentation for EELS in STEM
236
7.3.1
Electron optics
236
7.3.2
Software and hardware
238
7.3.3
Miscellaneous practical factors: stability and
environment of microscope
240
— xiv —
______________________________________________________________________________Contents
7.4
Spatial
resolution of EELS in STEM
240
7.4.1
Pioneering studies on image contrast formed by
inelastically scattered electrons
240
7.4.2
Decisive parameters for high spatial-resolution
EELS imaging in STEM
241
7.4.3
Delocalization in elastic scattering: incident
probe propagation
242
7.4.4
Delocalization in inelastic scattering
(1):
conventional impact parameter
244
7.4.5
Delocalization in inelastic scattering
(2):
non-locality
245
7.5
Experimental results of high spatial-resolution
observation
247
7.6
Summary and future prospects
251
References
253
8.
Density Functional Theory for ELNES in STEM-EELS
257
T. Mizoguchi
8.1
Overview
257
8.2
Basics of ELNES calculation
258
8.3
Theoretical calculation of ELNES
260
8.3.1
ELNES calculation with the all-electron method
260
8.3.2
ELNES calculation with the pseudopotential
method
264
8.3.3
ELNES calculation with momentum
transfer vector
266
8.3.4
Interpretation of ELNES by overlap population
diagram
270
8.4
Summary
277
References
279
PART
3:
ADVANCED METHODS IN STEM
9.
Aberration Correction in STEM
283
H. Sawada
— xv —
Contents______________________________________________________________________
9.1 Multipole-type
aberration correctors
in
electron microscopes
283
9.1.1
Round lens and multipole for aberration corrector
283
9.1.2
Review of an octupole-quadrupole-type Cs
corrector
286
9.2
Hexapole-type Cs corrector
288
9.2.1
Review of a hexapole-type Cs corrector
288
9.2.1.1
Hexapole field
289
9.2.1.2
Primary suggestion for derivation of Cs
by two hexapoles and drift space
290
9.2.1.3
Negative Cs by two hexapoles and drift
space
292
9.2.1.4
Negative Cs by a thick hexapole field
293
9.2.1.5
ef-type hexapole Cs corrector for
ТЕМ
294
9.2.1.6
Hexapole-type Cs corrector for STEM
295
9.2.2
Mechanism of Cs correction
296
9.2.3
Practical hexapole-type aberration corrector for
STEM
299
9.2.4
Extended hexapole-type correctors
300
9.3
Summary
300
Supplement: Lens action for electrons by rotationally symmetrical
distribution of a magnetic field
301
References
304
10.
Secondary Electron Microscopy in STEM
307
H. Inada and Y. Zhu
10.1
Basic components of
SEM
for better resolution
307
10.1.1
Development of electron source
309
10.1.2
Design of the objective lens
310
10.1.3
Detector design
312
10.1.4
Diffraction-limited resolution
313
10.1.5
Chromatic aberration and the stability of the
microscope
314
10.2
Characteristics of secondary electrons for imaging
315
10.2.1
Interaction of electrons and specimens
315
І
0.2.1.1
Secondary electrons
316
— xvi —
Contents
10.2.1.2 Backscattered
electrons
317
10.2.1.3
Characteristic X-rays
317
10.2.1.4
Auger electrons
317
10.2.1.5
Cathode luminescence
318
10.2.2
Energy spectrum of interaction of electrons and
specimens
318
10.2.3
Electron scattering in specimens
319
10.2.4
Secondary electron generation
320
10.3
High-resolution
SE
imaging
321
10.3.1
High-resolution in-lens FE-SEM
321
10.3.2
High-resolution
SE
imaging with STEM
323
10.3.2.1
Cambridge work
323
10.3.2.2
The MIDAS project in Arizona
325
10.3.2.3
The UHV-STEM project in Japan
328
10.3.3
Application of high-voltage
SEM
as an inspection
tool for semiconductors
329
10.4
Atomic-resolution
SE
imaging and recent progress
in STEM
330
10.4.1
Aberration-corrected STEM with
SE
detectors
330
10.4.2
Experimental apparatus
331
10.4.3
SE
image of isolated uranium single atoms
332
10.4.4
Image contrast for heavy and light atoms
333
10.4.5
Study of the origin of
SE
signals with
specimen bias
336
10.4.6
Mechanism of atomic resolution
SE
imaging
338
10.5
Summary and future prospects
340
References
341
11.
Scanning Confocal Electron Microscopy
345
K. Mitsuishi and M. Takeguchi
11.1
Overview
345
11.2
Image formation and depth sectioning
353
11.2.1
Point spread function
354
11.2.2
Three-dimensional amplitude point spread
function (3D-APSF)
356
— xvii —
Contents
11.2.3 3D-PSF
and
3O-CTF
of confocal systems
360
11.2.4 Multislice
description of
PSF 363
11.2.5
HAADF-STEM
PSF 364
11.2.6
Intensity point spread function
366
11.3
Simulation of
SCEM
images
366
11.3.1
Image of a single atom
366
11.3.2
Dynamical image simulations of
SCEM
368
11.4
Extension of
SCEM
372
11.4.1
ADF-SCEM
373
11.4.2
Energy-filtered
SCEM
378
11.5
Summary
380
References
381
12.
Electron Tomography in STEM
383
N.
Tanaka
12.1
Principles of three-dimensional reconstruction
383
12.1.1
Mathematical basis of X-ray computed
tomography
383
12.1.2
The problem of the Fourier space reconstruction
approach
386
12.1.3
Back-projection method
386
12.1.4
Resolution of tomography
388
12.1.5
Other requirements for obtaining
projected images
389
12.2
Application of
ТЕМ
images to electron tomography
390
12.3
Application of ADF-STEM images to electron
tomography
391
12.4
Application of energy-filtered images to electron
tomography
392
12.5
Actual examples of ADF-STEM tomography
395
12.6
Examples of reconstruction using energy-filtered images
in STEM
398
12.7
Summary and future prospects
398
References
400
— xviii —
Contente
13.
Electron
Holography
and
Lorentz Electron
Micro¬
scopy in STEM
403
N.
Tanaka
13.1
Holography in STEM
403
13.1.1
In-line STEM holography (Gabor s scheme)
406
13.1.2
In-line STEM holography far out of focus
(Fraunhofer s scheme)
407
13.1.3
In-line STEM holography with a configured
detector (Veneklasen s scheme)
408
13.1.4
In-line dark field holography (Konnert s scheme)
409
13.1.5
STEM equivalent to off-axis
ТЕМ
holography
410
13.1.6
Modulated Gabor-type holography
411
13.1.7
Leuthner s scheme in STEM holography
412
13.1.8
Far-out-of-focus off-axis STEM holography
413
13.1.9
Off-axis form of Veneklasen s scheme in STEM
413
13.1.10
Off-axis dark field STEM holography
414
13.2
Lorentz
electron microscopy in STEM
415
13.2.1
Basic knowledge of electrons moving in a
magnetic field
415
13.2.2
The differential phase contrast method in STEM
416
13.2.3
Scanning interference electron microscopy in
STEM
418
13.2.4
Experimental results using both of the methods
and quantification
420
13.3
Summary
421
References
422
14.
Recent Topics and Future Prospects in STEM
425
N.
Tanaka
14.1
Image resolution determined by probe size
425
14.2
Chromatic aberration correction in electron microscopes
427
14.3
S
imulation for quantitative estimation of ADF-STEM and
ABF-STEM images
427
14.4
Development of elemental analysis using EDX
428
14.5
Other signal detection for STEM images
428
— xix —
Contents
14.6 Electron
tomography in STEM
430
14.6.1
Ordinary electron tomography
430
14.6.2
Depth-sectioning method in ADF-STEM
430
14.6.3
Confocal imaging mode in STEM
431
14.6.4
Discrete tomography
431
14.7
Advancement of imaging theories
432
14.8
Towards lower-voltage STEM
432
14.9
In-situ observation and high-resolution observation in gas
and liquid atmospheres
433
14.10
Pulsed electron beam in STEM for time
-resol ved
observa¬
tion and its new possibility
434
14.11
Coincidence electron microscopy in STEM
435
14.12
Use of spin-polarized electron beams and vortex electron
beams
435
14.13
Final remarks: What materials and phenomena will be
observed by STEM?
436
References
436
Appendices
Al
Fourier Transforms for
ТЕМ
and STEM
443
N.
Tanaka
References
451
A2 Inelastic Scattering Coefficient and Mixed Dynamical
Form Factor
453
N.
Tanaka
References
460
A3
Ronchigram and Geometrical Aberrations in STEM
461
H. Sawada
References
484
A4
Coherent Convergent-Beam Electron Diffraction in STEM
487
K. Saitoh
References
495
Contents
A5 Double Resolution in
STEM and
Ptychography 497
K.
Saitoh
References
501
A6 Multislice
Method for STEM Image Simulation
503
K. Mitsuishi and K. Ishizuka
References
520
A7 Introduction to Bethe s Dynamical Diffraction Theory
523
N.
Tanaka
References
527
A8 Dynamical Diffraction Theory by Van Dyck
529
N.
Tanaka and
S.D.
Findlay
References
534
A9 Frozen Phonon Method for
TDS
Calculation in STEM
Image Simulation
537
K. Saitoh
References
541
AIO Relati
vistic Correction in Electron Microscopy
543
K. Watanabe
References
546
Author Index
547
Subject Index
553
XXI
SCANNING
TRANSMISSION
ELECTRON
MICROSCOPY OF NANOMATERIALS
Basics of Imaging and Analysis
This book covers the basses, present status, and future prospects
of high-resolution scanning transmission electron microscopy
(STEM) for advanced undergraduates, graduate students, and early
career researchers. Topics covered include recent achievements
in the field of STEM obtained with advanced technologies such
as spherical aberration correction, high-sensitivity electron energy
loss spectroscopy. and the software of image mapping. The future
prospects chapter also deals with z-slice imaging and confocal STEM
for
3D
analysis of nan
о
struct
u
red materials, in situ observation of
catalytic reactions, and new analysis techniques using pulsed, vortex,
and spin-polarized electrons.
|
any_adam_object | 1 |
author_GND | (DE-588)1063671906 |
building | Verbundindex |
bvnumber | BV041154239 |
classification_rvk | VE 9850 |
ctrlnum | (OCoLC)904260276 (DE-599)BVBBV041154239 |
discipline | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01797nam a2200361 c 4500</leader><controlfield tag="001">BV041154239</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150320 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130718s2015 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848167896</subfield><subfield code="9">978-1-84816-789-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">184816789X</subfield><subfield code="9">1-84816-789-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)904260276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041154239</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scanning transmission electron microscopy of nanomaterials</subfield><subfield code="b">basics of imaging and analysis</subfield><subfield code="c">ed. Nobuo Tanaka</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XLIV, 571 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raster-Transmissions-Elektronenmikroskopie</subfield><subfield code="0">(DE-588)4320991-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Raster-Transmissions-Elektronenmikroskopie</subfield><subfield code="0">(DE-588)4320991-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tanaka, Nobuo</subfield><subfield code="d">1949-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1063671906</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026129647&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026129647&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026129647</subfield></datafield></record></collection> |
id | DE-604.BV041154239 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:40:49Z |
institution | BVB |
isbn | 9781848167896 184816789X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026129647 |
oclc_num | 904260276 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XLIV, 571 S. Ill., graph. Darst. |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Imperial College Press |
record_format | marc |
spelling | Scanning transmission electron microscopy of nanomaterials basics of imaging and analysis ed. Nobuo Tanaka London Imperial College Press 2015 XLIV, 571 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Raster-Transmissions-Elektronenmikroskopie (DE-588)4320991-9 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Raster-Transmissions-Elektronenmikroskopie (DE-588)4320991-9 s Nanostrukturiertes Material (DE-588)4342626-8 s DE-604 Tanaka, Nobuo 1949- Sonstige (DE-588)1063671906 oth Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026129647&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026129647&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Scanning transmission electron microscopy of nanomaterials basics of imaging and analysis Raster-Transmissions-Elektronenmikroskopie (DE-588)4320991-9 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
subject_GND | (DE-588)4320991-9 (DE-588)4342626-8 |
title | Scanning transmission electron microscopy of nanomaterials basics of imaging and analysis |
title_auth | Scanning transmission electron microscopy of nanomaterials basics of imaging and analysis |
title_exact_search | Scanning transmission electron microscopy of nanomaterials basics of imaging and analysis |
title_full | Scanning transmission electron microscopy of nanomaterials basics of imaging and analysis ed. Nobuo Tanaka |
title_fullStr | Scanning transmission electron microscopy of nanomaterials basics of imaging and analysis ed. Nobuo Tanaka |
title_full_unstemmed | Scanning transmission electron microscopy of nanomaterials basics of imaging and analysis ed. Nobuo Tanaka |
title_short | Scanning transmission electron microscopy of nanomaterials |
title_sort | scanning transmission electron microscopy of nanomaterials basics of imaging and analysis |
title_sub | basics of imaging and analysis |
topic | Raster-Transmissions-Elektronenmikroskopie (DE-588)4320991-9 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
topic_facet | Raster-Transmissions-Elektronenmikroskopie Nanostrukturiertes Material |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026129647&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026129647&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tanakanobuo scanningtransmissionelectronmicroscopyofnanomaterialsbasicsofimagingandanalysis |