Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York, NY [u.a.]
Springer
2013
|
Schriftenreihe: | Fields Institute communications
67 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XXVI, 602 S. Ill. |
ISBN: | 1461464021 9781461464020 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV041128732 | ||
003 | DE-604 | ||
005 | 20130909 | ||
007 | t | ||
008 | 130705s2013 a||| |||| 00||| eng d | ||
020 | |a 1461464021 |9 1-4614-6402-1 | ||
020 | |a 9781461464020 |9 978-1-4614-6402-0 | ||
035 | |a (OCoLC)856813871 | ||
035 | |a (DE-599)BVBBV041128732 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-355 |a DE-19 | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a MAT 146f |2 stub | ||
245 | 1 | 0 | |a Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds |c Radu Laza ..., eds. |
264 | 1 | |a New York, NY [u.a.] |b Springer |c 2013 | |
300 | |a XXVI, 602 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Fields Institute communications |v 67 | |
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a K 3- Fläche |0 (DE-588)4162958-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Calabi-Yau-Mannigfaltigkeit |0 (DE-588)4440893-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2011 |z Toronto |2 gnd-content | |
689 | 0 | 0 | |a K 3- Fläche |0 (DE-588)4162958-9 |D s |
689 | 0 | 1 | |a Calabi-Yau-Mannigfaltigkeit |0 (DE-588)4440893-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Laza, Radu |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4614-6403-7 |
830 | 0 | |a Fields Institute communications |v 67 |w (DE-604)BV035418374 |9 67 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026104603&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-026104603 |
Datensatz im Suchindex
_version_ | 1804150521113608192 |
---|---|
adam_text | Contents
Part I Introductory Lectures
КЗ
and
Enriques
Surfaces
..................................... 3
Shigeyuki
Ко
η
dö
1
Introduction
...........................................
З
2
Lattices
............................................... 4
2.1
Definition
........................................ 4
2.2
Examples
....................................... 5
2.3
Un.imodu.Iar Lattices
............................ 5
2.4
Proposition
....................................... 5
2.5
Proposition
...................................... 5
2.6
Discriminant Quadratic Form
....................... 6
2.7
Overlattices
...................................... 6
2.8
Proposition
....................................... 7
2.9
Examples
........................................ 7
2.10
Primitive Embeddings
.............................. 8
2.11
Proposition
....................................... 8
2.12
Corollary
........................................ 8
2.13
Example
......................................... 9
2.14
Corollary
........................................ 9
2.15
Corollary
..................................... . . . 9
2.16
Theorem.
([30]) ................................... 10
3
Periods of
КЗ
and
Enriques
Surfaces
......................... 10
3.1
Periods of
КЗ
Surfaces
............................. 10
3.2
Periods of
Enriques
Surfaces
........................ 11
3.3
Remark
.......................................... 12
3.4
Remark
.......................................... 13
3.5
Example
......................................... 14
4
Automorphisms
........................................... 15
4.1
Torelli
Type Theorem and the Group of Automorphisms
for an Algebraic
КЗ
Surface
........................ 15
xvi
Contents
4.2
Theorem
([35]) ................................... 16
4.3
Theorem
([35])................................... 16
4.4
Corollary
........................................ 17
4.5
The Leech Lattice and the Group of Automorphisms
of a Generic Jacobian
Kummer
Surface
............... 17
4.6
Theorem (f
10],
Chap.
27)........................... 18
4.7
Proposition
([4]).................................. 18
4.8
Finite Groups of Automorphisms of A 3 Surfaces
....... 19
4.9
Proposition
([29])................................. 19
4.10
Proposition
([29])................................. 20
4.11
Theorem ([28J)
................................... 20
4.12
Automorphisms of
Enriques
Surfaces
................. 21
4.13
Theorem
([2, 31],
Theorem
10.1.2)................... 21
5
Borcherds Products
........................................ 22
5.1
Theorem
([7]) .................................... 23
5.2
Example
([5])..................................... 23
5.3
Example
([6, 7]).................................. 24
5.4
Example
([15, 25])................................ 25
References
..................................................... 27
Transcendental Methods in the Study of Algebraic Cycles with a Special
Emphasis on Calabi-Yau Varieties
29
James U. Lewis
1
Introduction
.............................................. 29
2
Notation
................................................. 31
3
Some Hodge Theory
....................................... 31
3.4
Formalism of Mixed Hodge Stxuctures
................ 33
4
Algebraic Cycles
.......................................... 36
4.6
Generalized Cycles
................................ 38
5
A Short Detour via
Мил
or
Ä
-Theory
......................... 40
5.1
The Gersten-Milnor Complex
....................... 41
6
Hypercohomology
........................................ 42
7
Deligne Cohomology
...................................... 43
7.6
Alternate Take on Deligne Cohomology
............... 46
7.8
Deligne-Beihnson Cohomology
..................... 47
8
Examples
οίΉΓτ3^{Χ,Κ^χ)
and Corresponding Regulators
....... 51
8.1
Case
m
^
0
and CY Threefolds
...................... 51
8 5
Deligne Cohomology and Normal Functions
........... 55
8.9
Case
m
^
1
and
КЗ
Surfaces
........................ 56
8.18
Torsion
Indécomposables
........................... 59
8.2.1
Case
m
- 2
and Elliptic Curves
...................... 60
8.2.2
Constructing K2( X) Classes on Elliptic Curves X
....... 61
References
..................................................... 68
Contents xvi
IVo
Lectures on the Arithmetic of
КЗ
Surfaces
71
Matthias Schutt
1
Introduction
.............................................. 71
2
Motivation: Rational Points on Algebraic Curves
............... 72
3
КЗ
Surfaces and Rational
Points............................. 73
4
Elliptic
КЗ
Surfaces
....................................... 74
5
Picard
Number One
....................................... 76
6
Computation of
Picard
Numbers
............................. 77
7
КЗ
Surfaces of
Picard
Number One
.......................... 79
7.1
van Luijk s Approach
.............................. 80
7.2
Kloosterman s Improvement
........................ 80
7.3
Ejsenhans-Iahneľs
Work.
........................... 80
7.4
Outlook
.......................................... 81
7.5
Feasibility
........................................ 81
8 Hasse
Principle for
КЗ
Surfaces
............................. 82
9
Rational Curves on
КЗ
Surfaces
............................. 83
10
Isogeny Notion for
КЗ
Surfaces
............................. 83
1.1
Singular
КЗ
Surfaces
...................................... 84
і
1.1.
Torelli
Theorem for Singular
КЗ
Surfaces
............. 85
11.2
Surjecti
vity
of the Period Map
....................... 86
11.3
Singular Abehan Surfaces
........................ 86
12
Shioda-lnose Structures
.................................... 87
13
Mordell-Weil Ranks of Elliptic
КЗ
Surfaces
................... 89
14
Fields of Definition of Singular
КЗ
Surfaces
................... 91
14.1 Mordeü
-Weil Ranks Over
Q
....................... 93
15
Modularity of Singular
КЗ
Surfaces
.......................... 93
References
..................................................... 96
Modularity of Calabi-Yau Varieties:
2011
and Beyond
...................................................101
Noriko Yur
1
Introduction
..............................................102
1.1
Brief History Since
2003 ...........................102
1.2
Plan of Lectures
...................................102
1.3
Disclaimer
.......................................103
1.4
Calabi-Yau Varieties: Definition
.....................103
2
The Modularity of Galois Representations of Calabi- Yau
Varieties (or Motives) Over
Q
...............................105
3
Results on Modularity of Galois Representations
...............110
3.1
Two-DimensionaJ Galois Representations Arising
from Calabi-Yau Varieties Over
Q
...................110
3 2
Modularity of Higher Dimensional Galois
Representations Arising from
КЗ
Surfaces Over
Q
......112
xviii Contents
3.3
The Modularity of Higher Dimensional Galois
Representations Arising from Calabi-Yao Threefolds
Over
Q
..........................................117
4
The Modularity of Mirror Maps of Calabi-^Yau Varieties,
and Mirror Moonshine
.....................................126
5
The Modularity of Generating Functions of Counting
Some
Quanü
ties on Calabi-Yau Varieties
..................... 129
6
Future Prospects
..........................................130
6.1
The Potential Modularity
...........................130
6.2
The Modularity of Moduli of Families
of Calabi-Yau Varieties
............................131
6.3
Congruences,Forma] Groups
........................131
6.4
The, Griffiths Intermediate Jacobians
of Calabi-Yau Threefolds
...........................131
6.5
Geometric Realization Problem
(the Converse Problem)
............................132
6.6
Modular Forms and
G
romo
v
-Witten
Invariants
.........133
6.7
Auiomorphic Black
Hole Entropy
....................
L33
6.8
Af^-Moonshine....................................
133
References
.....................................................137
Part II Research Articles: Arithmetic and Geometry of
КЗ,
Enriques
and Other Surfaces
Explicit Algebraic Coverings of a Pointed Torus
143
Ane
ST. Anema and
Jaap
Top
і
Introduction
..............................................143
2
The Coverings
............................................144
3
The Proofs
...............................................145
3.1 2
-Torsion
.................,.......................145
3.2
3-Torsion
.........................................146
3.3
¿-Torsion with
і
> 5...............................147
4
Intermediate Coverings
....................................150
4.1
All x-Coordinates
.................................150
4.2
One Point
........................................151
4.3
One x-Coordinare
.................................151
References
.....................................................152
Elliptic Fibrations on the Modular Surface Associated to
Ι ι
(8) 153
M.F
Bertin
and
O.
Lecacheux
1
Introduction
..............................................153
2
Definitions
...............................................155
3
D
і
seri
nun an
t
Forms
.......................................156
4
Root Lathees
.............................................156
4.1
A /An
...........................................157
4.2
Df/Di
...........................................157
4.3
Ej/Es
...........................................158
Contents
6
1
The Primitive Embeddings of
Lattices
..................
6.
2
Generators of L/Lj-oot
.....
6.
3
¿root
-
-
hgD]fj
............
6.
.4
¿root=
=
E -, D
i o
............
6
5
¿root ~
~
Ει Α ι ν
.............
6.
6
¿root=
-D]
...............
6.
¿root
-
-DcjA^ ............
6.8
¿root
-
-Ą
■_■■■...........
6.
9
¿root
-
6
10
¿rootr
-
¿^
...............
6.
11
¿root
-
l)6aI
.............
6
12
= p2ai
4.4
EÎ/E,
...........................................158
4.5
Щ/Ба
...........................................158
Elliptic Eibrations
.........................................159
5.1
КЗ
Surfaces and Elliptic Fibrations
...................159
5.2
Nikulin and Niemeier s Results
......................161
5.3
Nishiyama s Method
...............................162
Elliptic Eibrations of Yi
....................................164
©A: into Root
.....................164
.....................168
.....................168
.....................170
.....................170
.....................171
.....................171
.....................171
....................1
/J
7
Equations of the Eibrations
................................173
7.1
Equation of the Modular Surface Associated
to the Modular Group
/Ί(8)
.........................174
7.2
Construction of the Graph from
che
Modular
Eibration . . 175
7.3
Two Eibrations
....................................176
7.4
Divisors
.........................................177
8
Fibratrons from the Modular Fibration
........................179
9
A Second Set of Eibrations: Gluing and Breaking
..............186
9.1
Classical Examples
................................186
9.2
Fibration with a Singular Fiber of Type
/„,
η
Large
......187
9.3
Eibrations with Singular Fibers of Type
1*.............190
9.4
Breaking
.........................................192
10
Last Set
..................................................192
10.1
From Fibration of Parameter
ρ
......................193
10.2
From Fibration of Parameter
б
.......................195
References
.....................................................198
Universal
Kammer
Families Over Shimura Curves
201
Amnon
Besser
and Ron
Livné
1
introduction
..............................................201
2
КЗ
Surfaces with
Picard
Number
19
and Twists of Elliptic
Surfaces
.................................................204
2.1
Lattices
..........................................204
2.2
Elliptic Surfaces
..................................205
2.3
Quadratic Twists
..................................206
2.4
The Basic Construction
.............................207
2.5
The
Néron-
-Seven and the Transcendental Lattices
......208
Contents
3
The Moduli Map for Discriminants
6
and
15...................211
3.1
Marked Elliptic Fibrations and Moduli Spaces
.........212
3.2
Types of Marked
КЗ
Surfaces
.......................213
3.3
Abehan Surfaces with Quaternionic Multiplication
.....216
3.4
The Associated
Kummer
Surface
....................218
3.5
The Basic Isomorphism
............................220
3.6
Local Monodromies
...............................221
3.7
Case Number
1
on the List
..........................223
3.8
Case Number
3
on the List
..........................225
4 Isogenies
Between Abelian Surfaces and Discriminant Forms
... 226
4.1
The Theory of Discriminant Forms
...................226
4.2
Rank
4
Lattices and Discriminant Forms
..............228
4.3
Applications to
Isogenies
of Abelian Varieties
..........231
4.4
Abelian Varieties with Multiplication by EichJer
Orders
...........................................233
4.5
Further Analysis
..................................234
5
Isogcnies Related to Abelian Surfaces with Quaternionic
Multiplication
...........................................235
5.1
A Special Subgroup
...............................236
5.2
The Integral Cohomology of a QM Abehan Surface
.....236
5.3
The Type of the Special Subgroup
....................237
5.4
Discriminant Forms Associated w.ith QM Abelian
Surfaces
.........................................238
6
A Special Isogeny
.........................................238
6 1
The Isogeny
......................................238
6.2
A Converse Theorem
..............................240
6.3
Level Structures
...................................241
7
Isogeni.es and the Morrison Correspondence
...................242
7.1
The Morrison Correspondence
.......................242
7.2
NikultnMarkings
.................................243
7.3
The
Néron-
Seven Lattice of the Quotient Surface
......244
7.4
The Precise Correspondence
........................245
7.5
A Transcendental Description
.......................250
8
Explicit Computations
.....................................252
8.1
Number
5
on the List
..............................253
8.2
Case Number
9
on the List
..........................254
8 3
Number
10
on the List
.............................256
8.4
Number
6
on the List
..............................256
8.5
Number
2
on the List
..............................257
8.6
Number
7
on the List
..............................258
8.7
Number
8
on the List
..............................259
8.8
Number
11
on the List
.............................259
Appendix
......................................................260
A.I Rational Invariants of Quadratic Forms Associated with Singular
Fibers
...................................................260
A.LI Quadratic Forms Over Qp
..........................260
Contents
xxi
Λ.
1.2
Quadratic Forms of Singular Fibers
..................261
A.
1.3
Ternary
Fornis
of Quaternion Algebras
................263
References
.....................................................264
Numerical Trivial Automorphisms of
Enriques
Surfaces in Arbitrary
Characteristic
......................................................267
Igor V. DoJgachev
1
Introduction
..............................................267
2
Generalities
..............................................268
3
Lefschetz Fixed Point
Formala
..............................270
4
Cohomologically Trivial Automorphisms
.....................271
5
Numerically Trivial Automorphisms
.........................275
6
Examples
................................................276
7
Extra Special
Enriques
Surfaces
.............................281
References
.....................................................283
Picard-Fuchs Equations of Special One-Parameter Families
of Invertible Polynomials
............................................285
S
wan tie
G a h r s
1
Introduction
.............................................285
2
Preliminaries on
Invertibile
Polynomials
.......................287
3
The Picard-Fuchs Equation for Invertible
Polynomials and Consequences
.............................290
3.1
The GKZ System for Invertible Polynomials
...........291
3.2
The Picard-Fuchs Equation
.........................296
3.3
Statements on the Cohomology of the Solution Space
. . . 299
3.4
The Case of Arnold s Strange Duality
................301
3.5
Relations to the
Poincaré
Senes
and Monodromy
.......305
References
.....................................................309
A Structure Theorem for Fibratioas on
Delsarte
Surfaces
311
Bas Heyne
and Retake
Kloosterman
1
Introduction
..............................................311
2
Delsarte
Surfaces
.........................................313
3
IsotriviaJ Fibratioas
........................................323
References
.....................................................332
Fourier Mukai Partners and Polarised
КЗ
Surfaces
333
K. Hulek and D. PI
oog
1
Review Fourier-Mukai Partners of
КЗ
Surfaces
................334
1.1
Hislory: Derived Categories in Algebraic Geometry
.....334
1.2
Derived Categories as Invariants of Varieties
...........335
1.3
Fourier-
Muk
ai
Partners
............................336
1.4
Derived ami Birational Equivalence
..................338
xxii Contents
2
Lattices
..................................................338
2.1
Gram Matrices
....................................339
2.2
Genera
..........................................340
3
OverlatLices
..............................................342
3.9
Overlattices from Primitive Embeddmgs
..............346
4
K.3 Surfaces
..............................................350
5
Polarised
КЗ
Surfaces
.....................................352
6
Polarisation and
FM
Partners
...............................356
7
Counting LM Partners of Polarised
КЗ
Surfaces
in Lattice Terms
..........................................358
8
Exam pJ
es................................................361
References
.....................................................364
On a Family of
КЗ
Surfaces with
У^
Symmetry
........................367
Dagan
Karp,
Jacob Lewis, Daniel Moore, Dmitri Skjorshammer,
and Ursula Wbitcher
1
Introduction
..............................................368
2
Tone Varieties and Senuample Hypersurfaces
.................369
2.1
Tone Varieties and Reflexive Polytopes
..............369
2.2
SerniampJe Hypersurfaces and the Residue Map
........371
3
Three Symmetric Families of
КЗ
Surfaces
....................374
3.1
Symplectic Group Actions on
КЗ
Surfaces
.............^74
3.2
An J^j Symmetry of Polytopes and Hypersurfaces
......374
4
Picard-
Fuchs
Equations
....................................378
4.1
The Griffiths-Dwork Technique
.....................378
4.2
A Picard-
Fuchs
Equation
...........................379
5
Modularity and Its Geometric Meaning
.......................381
5.1
Elliptic Fibrauons on
КЗ
Surfaces
....................382
5.2 Kummer
and Shioda-Inose Structures Associated
to Products of Elliptic Curves
........................383
5.3
Modular Groups Associated to Our Families of
КЗ
Surfaces
.........................................384
References
......................................................385
KfA of Elliptically Fibered
КЗ
Surfaces: A Tale of Two Cycles
387
Matt Kerr
1
Introduction
..............................................387
2
Real and
Transcendenta]
Regulators
.........................388
3
The
Ар
-éry
Family and an Inhomogeneous Picard-Fuchs
Equation
................................................391
4
Åi-Polanzed
КЗ
Surfaces and a Higher Green s Function
.......397
5
Proof of the Tauberian Lemma
2.............................405
References
.....................................................408
Contents xxiii
A Note About Special Cycles on Moduli Spaces of
КЗ
Surfaces
..........411
Stephen
Kudla
1
Introduction..............................................
411
2
Special Cycles for Orthogonal Groups
........................412
2.1
Arithmetic Quotients
...............................412
2.2
Special Cycles
....................................412
3
Modular Generating
Senes
.................................414
4
The Case of
КЗ
Surfaces
...................................416
4.1
Modular
Interprétation
of the Special Cycles
...........418
4.2
Some Applications
................................418
5
Kuga-Satake AbeLiao Va.net.ies and Special Endomorphisms
.....423
5.1
The Kuga-Satake Const.ruct.ion
......................423
5.2
Special Cycles and
Specjał
Endomorphisms
...........425
References
.....................................................426
Enriques
Surfaces of IIutchinson-Gopel Type and
Mathieu
Automorphisms
...................................................429
Shigeru Mukai and Hisanori Ohashi
1
Introduction
.............................................429
2
Rational Surfaces and
Enriques
Surfaces
.....................432
3
Abelian Surfaces and
Enriques
Surfaces
......................434
4
Sexti.c
Enriques
Surfaces of Diagonal Type
...................439
5
Action of C of
Mathieu Type
on
Enriques
Surfaces
of
ľlutchinson-Gopel
Type
.................................442
6
Examples of
Mathieu Actions
by Large Groups
................446
7
The Characterization
......................................451
References
.....................................................453
Quartic
КЗ
Surfaces and Cremona Transformations
...................455
Key
і
Ogni so
1
Introduction
..............................................455
2
Proof of Theorem 1(1)(2)
...................................456
3
Proof of Theorem
1(3).....................................458
References
.....................................................460
Invariants of Regular Models of the Product of Two Elliptic Curves
at a Place of Multiplicative Reduction
................................461
Chad
Schoen
1
Introduction..............................................
461
2
Notaüons
................................................463
2.1
Basic Notations
...................................463
2.2
Notations Related to the Closed Fiber, F, of
π
:
í
-->■
Γ
. . 463
2.3
Notation Related to
Componente
of V
and Then Intersections
.............................464
3
The Weil Divisor Class Group of V
...........................464
4
The Homology and Cohomology of
V¿
.......................468
xxiv
Contents
5
Variation of
Lhe
Isomorphism
Q
ass of V
......................471
6
The
Picard
Group of V
.....................................473
7
Senu
-sta
ble
Models and Small Resolutions
....................479
8
The Sheaves R ftZ/n
......................................481
8.1
Notations
........................................481
References
.....................................................487
Part
Ш
Research Articles: Arithmetic and Geometry of Calabi-Yau
Threefolds and Higher Dimentional Varieties
Dynamics of Special Points on Intermediate Jacobians
..................491
X) Chen and James
Ü.
Lewis
1
Introduction
..............................................491
2
Some Preliminaries
........................................492
3
Main Results
.............................................494
References
.....................................................498
Calabi-Yau
Coni
fold Expansions
.....................................499
Sławomir Cynk
and
Duco
van
Straten
1
Introduction
..............................................499
2
How to Compute Picard-Fuchs Operators
...................· ■ 502
2.1
The Method of Griffiths Dwork
.....................502
2.2
Method of Period Expansion
........................503
3
Double OcLics
............................................506
4
An Algorithm
............................................511
References
.....................................................514
Quadratic Twists of Rigid Calabi-Yau Threefolds Over
Q
...............517
Fernando Q.
Gouvêa,
Іал
Kiming,
and Noriko Yin
1
Introduction
..............................................518
2
Quadratic Twists of Rigid Calabi-Yau Threefolds
..............518
2.1
Easy Examples of Twists
...........................521
2.2
Self-fiber Products of Rational Elliptic Surfaces
with Section and Their Twists
.......................522
2.3
The
Schoen
Qui
n
tic and Its Quadratic Twists
..........523
2.4
Explicit Description for a HoJomorphic 3-Form
for a Complete Intersection Calabi-Yau Threefold
......525
2.5
Two Rigid Calabi-Yau Threefolds of Werner
and van Geemen
..................................525
2.6
The Rigid Calabi-Yau Threefold of van Geemen
and Ny
gaard
......................................527
3
Remarks on the Levels of Twists
.............................528
4
Final Remarks
............................................528
4.1
An Explicit Unresolved Case
........................528
4.2
The Question About Existence of Geometric Twists
.....529
4.3
The Fixed Point Set of the Involution
ι
................530
References
.....................................................532
Contents
xxv
Counting Sheaves on Calabi-Yau and Abelian Threefolds
535
Martin G. Gulbrandsen
1
Virtual Counts
............................................536
1.1
Deformation
Invariance
............................536
1.2
Virtual .Fundamental Class
..........................536
1.3
Obstruction Theory
................................538
1.4
Behxend s Weighted
Euler
Characteristic
..............541
2
Abelian Threefolds
........................................542
2.1
Determinants
.....................................542
2.2
Translation and Twist
..............................544
.References
.....................................................547
The
Segre
Cubic and Borcherds Products
549
Sh.igeyu.ki Rondo
1
Introduction
..............................................549
2
The
Segre
Cubic Threefold
.................................550
3
Λ
Complex Ball Quotieni
..................................551
3.1
A Complex Ball
...................................551
3.2
Roots and Reflections
..............................553
3.3
Ball Quotient and Heegner Divisors
..................554
3.4
Interpreiauon via
КЗ
Surfaces
.......................555
4
Weil Representation
.....................................557
5
Borcherds Products
........................................558
6
Grksenko -Borcherds Liftings
...............................561
References
.....................................................564
Quasi-modular Forms Attached to Hodge Structures
567
Hossein Movasati
1
Introduction
..............................................567
2
Moduli of Polarized Hodge Structures
........................570
2.1
The Space of Polarized Lattices
......................570
2.2
Hodge. Filtration
..................................571
2.3
Period Domain
U
.................................572
2.4
An Algebraic Group
...............................573
2.5
Griffiths Period Domain
............................574
3
Period Map
..........................,....................575
3.1
PoincarcDual
....................................575
3 2
Period Matrix
.....................................576
3.3
A Canonical Connection on
Ĺ
.......................576
3 4
Some Functions on
Ľ
..............................577
4
Quasi-modular Forms Attached to Hodge Structures
............578
4.1
Enhanced Projective Varieties
.......................578
4.2
Period Map
.......................................580
4.3
Quasi-modular Forms
..............................580
χ,χνί
Contents
5
Examples
................................................581
5.1 Siegel
Quasi-modular Forms
........................582
5.2
Hodge Numbers,
1,1,1,1 ..........................584
References
.....................................................586
The Zero Locus of the Infinitesimal Invariant
..........................589
G. PearJstein and Ch.
Schnell
1
Introduction
..............................................589
2
Proof of the Theorem
......................................591
2.1
AJgebraic
Description
of the Zero Locus
..............591
2.2
A More Sophisticated Description
....................592
2.3
Zero Loci of Sections of Coherent Sheaves
............595
3
Relation to AJgebraic Cycles
................................598
3.1
Green-Griffiths Program
............................598
References
.....................................................601
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV041128732 |
classification_rvk | SK 350 |
classification_tum | MAT 146f |
ctrlnum | (OCoLC)856813871 (DE-599)BVBBV041128732 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01722nam a2200421 cb4500</leader><controlfield tag="001">BV041128732</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130909 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130705s2013 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1461464021</subfield><subfield code="9">1-4614-6402-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461464020</subfield><subfield code="9">978-1-4614-6402-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)856813871</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041128732</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 146f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds</subfield><subfield code="c">Radu Laza ..., eds.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 602 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Fields Institute communications</subfield><subfield code="v">67</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">K 3- Fläche</subfield><subfield code="0">(DE-588)4162958-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Calabi-Yau-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4440893-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2011</subfield><subfield code="z">Toronto</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">K 3- Fläche</subfield><subfield code="0">(DE-588)4162958-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Calabi-Yau-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4440893-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Laza, Radu</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4614-6403-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Fields Institute communications</subfield><subfield code="v">67</subfield><subfield code="w">(DE-604)BV035418374</subfield><subfield code="9">67</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026104603&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026104603</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 2011 Toronto gnd-content |
genre_facet | Konferenzschrift 2011 Toronto |
id | DE-604.BV041128732 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:40:14Z |
institution | BVB |
isbn | 1461464021 9781461464020 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026104603 |
oclc_num | 856813871 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-19 DE-BY-UBM |
owner_facet | DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-19 DE-BY-UBM |
physical | XXVI, 602 S. Ill. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer |
record_format | marc |
series | Fields Institute communications |
series2 | Fields Institute communications |
spelling | Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds Radu Laza ..., eds. New York, NY [u.a.] Springer 2013 XXVI, 602 S. Ill. txt rdacontent n rdamedia nc rdacarrier Fields Institute communications 67 Literaturangaben K 3- Fläche (DE-588)4162958-9 gnd rswk-swf Calabi-Yau-Mannigfaltigkeit (DE-588)4440893-6 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 2011 Toronto gnd-content K 3- Fläche (DE-588)4162958-9 s Calabi-Yau-Mannigfaltigkeit (DE-588)4440893-6 s DE-604 Laza, Radu Sonstige oth Erscheint auch als Online-Ausgabe 978-1-4614-6403-7 Fields Institute communications 67 (DE-604)BV035418374 67 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026104603&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds Fields Institute communications K 3- Fläche (DE-588)4162958-9 gnd Calabi-Yau-Mannigfaltigkeit (DE-588)4440893-6 gnd |
subject_GND | (DE-588)4162958-9 (DE-588)4440893-6 (DE-588)1071861417 |
title | Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds |
title_auth | Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds |
title_exact_search | Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds |
title_full | Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds Radu Laza ..., eds. |
title_fullStr | Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds Radu Laza ..., eds. |
title_full_unstemmed | Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds Radu Laza ..., eds. |
title_short | Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds |
title_sort | arithmetic and geometry of k3 surfaces and calabi yau threefolds |
topic | K 3- Fläche (DE-588)4162958-9 gnd Calabi-Yau-Mannigfaltigkeit (DE-588)4440893-6 gnd |
topic_facet | K 3- Fläche Calabi-Yau-Mannigfaltigkeit Konferenzschrift 2011 Toronto |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026104603&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035418374 |
work_keys_str_mv | AT lazaradu arithmeticandgeometryofk3surfacesandcalabiyauthreefolds |