Derived manifolds from functors of points:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Logos-Verl.
2013
|
Schriftenreihe: | Augsburger Schriften zur Mathematik, Physik und Informatik
22 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | 155 S. |
ISBN: | 9783832534059 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV041128526 | ||
003 | DE-604 | ||
005 | 20130917 | ||
007 | t | ||
008 | 130705s2013 m||| 00||| eng d | ||
015 | |a 13,N18 |2 dnb | ||
016 | 7 | |a 1033918296 |2 DE-101 | |
020 | |a 9783832534059 |c kart. : EUR 35.00 (DE), EUR 36.00 (AT), sfr 46.90 (freier Pr.) |9 978-3-8325-3405-9 | ||
035 | |a (OCoLC)856813745 | ||
035 | |a (DE-599)DNB1033918296 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-188 | ||
082 | 0 | |a 512.62 |2 22/ger | |
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
100 | 1 | |a Vogler, Franz |d 1982- |e Verfasser |0 (DE-588)136183719 |4 aut | |
245 | 1 | 0 | |a Derived manifolds from functors of points |c Franz Vogler |
264 | 1 | |a Berlin |b Logos-Verl. |c 2013 | |
300 | |a 155 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Augsburger Schriften zur Mathematik, Physik und Informatik |v 22 | |
502 | |a Augsburg, Univ., Diss., 2013 | ||
650 | 0 | 7 | |a Kategorientheorie |0 (DE-588)4120552-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schema |g Mathematik |0 (DE-588)4205720-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktor |0 (DE-588)4130706-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Kategorientheorie |0 (DE-588)4120552-2 |D s |
689 | 0 | 1 | |a Funktor |0 (DE-588)4130706-9 |D s |
689 | 0 | 2 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 3 | |a Schema |g Mathematik |0 (DE-588)4205720-6 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Augsburger Schriften zur Mathematik, Physik und Informatik |v 22 |w (DE-604)BV017601953 |9 22 | |
856 | 4 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=4304894&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026104401&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-026104401 |
Datensatz im Suchindex
_version_ | 1806325278844125184 |
---|---|
adam_text |
IMAGE 1
C O N T E N T S
1 INTRODUCTION 3
1.1 MOTIVATION AND ACCOMPLISHMENTS 3
1.2 ORGANISATION OF THE CHAPTERS 5
1.3 BACKGROUND AND NOTATION 6
1.4 ACKNOWLEDGEMENTS 7
2 ANALYSIS O F M O D E L STRUCTURES 9
2.1 OBJECTWISE ADJOINTS 9
2.2 THE GLOBAL MODEL STRUCTURES 12
2.3 SIMPLICIAL ENRICHMENT OF MODEL CATEGORIES 19
2.4 ABSOLUTE DERIVED FUNCTORS 31
2.5 HOMOTOPY LIMITS AS ABSOLUTE DERIVED FUNCTORS 38
2.G THE LEFT BOUSFIELD LOCALIZATION 45
2.7 SITES AND THEIR MORPHISMS 47
2.8 HOMOTOPY SHEAVES 51
3 S M O O T H FUNCTORS AS C-SCHEMES 6 3
3.1 COMMUTATIVE ALGEBRA WITH C-RINGS G3
3.2 C-RINGS AND TOPOLOGY 82
3.3 C-SCHEMES FROM SMOOTH FUNCTORS 93
3.4 THE BIG STRUCTURE SHEAF 99
3.5 C-RINGED SPACES AS C-SCHEMES . ; 104
3.6 FROM SMOOTH FUNCTORS TO C-RINGED SPACES 108
4 DERIVED MANIFOLDS AS FUNCTORS 115
4.1 THE LAYOUT FOR SMOOTH RINGS 116
4.2 TOPOLOGY FOR SMOOTH RINGS 118
4.3 DERIVED MANIFOLDS FROM SMOOTH-SIMPLIEIAL FUNCTORS 124
4.4 THE GLOBAL STRUCTURE SHEAF 129
4.5 DERIVED MANIFOLDS AS RINGED SPACES 135
4.G THE FUNCTOR APPROACH TO L R S 139
HTTP://D-NB.INFO/1033918296 |
any_adam_object | 1 |
author | Vogler, Franz 1982- |
author_GND | (DE-588)136183719 |
author_facet | Vogler, Franz 1982- |
author_role | aut |
author_sort | Vogler, Franz 1982- |
author_variant | f v fv |
building | Verbundindex |
bvnumber | BV041128526 |
classification_rvk | SK 320 |
ctrlnum | (OCoLC)856813745 (DE-599)DNB1033918296 |
dewey-full | 512.62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.62 |
dewey-search | 512.62 |
dewey-sort | 3512.62 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV041128526</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130917</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130705s2013 m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">13,N18</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1033918296</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783832534059</subfield><subfield code="c">kart. : EUR 35.00 (DE), EUR 36.00 (AT), sfr 46.90 (freier Pr.)</subfield><subfield code="9">978-3-8325-3405-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)856813745</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1033918296</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.62</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vogler, Franz</subfield><subfield code="d">1982-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136183719</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Derived manifolds from functors of points</subfield><subfield code="c">Franz Vogler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Logos-Verl.</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">155 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Augsburger Schriften zur Mathematik, Physik und Informatik</subfield><subfield code="v">22</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Augsburg, Univ., Diss., 2013</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schema</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4205720-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktor</subfield><subfield code="0">(DE-588)4130706-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktor</subfield><subfield code="0">(DE-588)4130706-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Schema</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4205720-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Augsburger Schriften zur Mathematik, Physik und Informatik</subfield><subfield code="v">22</subfield><subfield code="w">(DE-604)BV017601953</subfield><subfield code="9">22</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4304894&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026104401&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026104401</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV041128526 |
illustrated | Not Illustrated |
indexdate | 2024-08-03T00:47:04Z |
institution | BVB |
isbn | 9783832534059 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026104401 |
oclc_num | 856813745 |
open_access_boolean | |
owner | DE-384 DE-188 |
owner_facet | DE-384 DE-188 |
physical | 155 S. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Logos-Verl. |
record_format | marc |
series | Augsburger Schriften zur Mathematik, Physik und Informatik |
series2 | Augsburger Schriften zur Mathematik, Physik und Informatik |
spelling | Vogler, Franz 1982- Verfasser (DE-588)136183719 aut Derived manifolds from functors of points Franz Vogler Berlin Logos-Verl. 2013 155 S. txt rdacontent n rdamedia nc rdacarrier Augsburger Schriften zur Mathematik, Physik und Informatik 22 Augsburg, Univ., Diss., 2013 Kategorientheorie (DE-588)4120552-2 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Schema Mathematik (DE-588)4205720-6 gnd rswk-swf Funktor (DE-588)4130706-9 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Kategorientheorie (DE-588)4120552-2 s Funktor (DE-588)4130706-9 s Mannigfaltigkeit (DE-588)4037379-4 s Schema Mathematik (DE-588)4205720-6 s DE-604 Augsburger Schriften zur Mathematik, Physik und Informatik 22 (DE-604)BV017601953 22 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=4304894&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026104401&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Vogler, Franz 1982- Derived manifolds from functors of points Augsburger Schriften zur Mathematik, Physik und Informatik Kategorientheorie (DE-588)4120552-2 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Schema Mathematik (DE-588)4205720-6 gnd Funktor (DE-588)4130706-9 gnd |
subject_GND | (DE-588)4120552-2 (DE-588)4037379-4 (DE-588)4205720-6 (DE-588)4130706-9 (DE-588)4113937-9 |
title | Derived manifolds from functors of points |
title_auth | Derived manifolds from functors of points |
title_exact_search | Derived manifolds from functors of points |
title_full | Derived manifolds from functors of points Franz Vogler |
title_fullStr | Derived manifolds from functors of points Franz Vogler |
title_full_unstemmed | Derived manifolds from functors of points Franz Vogler |
title_short | Derived manifolds from functors of points |
title_sort | derived manifolds from functors of points |
topic | Kategorientheorie (DE-588)4120552-2 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Schema Mathematik (DE-588)4205720-6 gnd Funktor (DE-588)4130706-9 gnd |
topic_facet | Kategorientheorie Mannigfaltigkeit Schema Mathematik Funktor Hochschulschrift |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=4304894&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026104401&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV017601953 |
work_keys_str_mv | AT voglerfranz derivedmanifoldsfromfunctorsofpoints |