Capillary electrophoresis and microchip capillary electrophoresis: principles, applications, and limitations
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2013
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XXII, 394 S. Ill., graph. Darst. |
ISBN: | 9780470572177 0470572175 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV041104470 | ||
003 | DE-604 | ||
005 | 20140417 | ||
007 | t | ||
008 | 130624s2013 xxuad|| |||| 00||| eng d | ||
010 | |a 2012031794 | ||
020 | |a 9780470572177 |c cloth |9 978-0-470-57217-7 | ||
020 | |a 0470572175 |c cloth |9 0-470-57217-5 | ||
035 | |a (OCoLC)843751797 | ||
035 | |a (DE-599)BVBBV041104470 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-634 |a DE-11 | ||
050 | 0 | |a TP248.25.C37 | |
082 | 0 | |a 502.8/2 | |
084 | |a WC 3440 |0 (DE-625)148085: |2 rvk | ||
084 | |a WC 4150 |0 (DE-625)148092: |2 rvk | ||
245 | 1 | 0 | |a Capillary electrophoresis and microchip capillary electrophoresis |b principles, applications, and limitations |c edited by Carlos D. García ... |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2013 | |
300 | |a XXII, 394 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Capillary electrophoresis | |
650 | 4 | |a Microtechnique | |
650 | 0 | 7 | |a Kapillarelektrophorese |0 (DE-588)4290002-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kapillarelektrophorese |0 (DE-588)4290002-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a García, Carlos D. |d 1972- |0 (DE-588)1037170717 |4 edt | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026080794&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026080794&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-026080794 |
Datensatz im Suchindex
_version_ | 1804150488066686976 |
---|---|
adam_text | CONTENTS
PREFACE
xvii
ACKNOWLEDGMENTS
xix
CONTRIBUTORS
xxi
1
Critical Evaluation of the Use of Surfactants in Capillary
Electrophoresis
1
Jessica
L
Felhofer,
Karin
Y.
Chumbimuni-Torres, Maria F. Mora,
Gábriellé
G. Haby,
and Carlos
D.
García
1.1
Introduction
1
1.2
Surfactants for Wall Coatings
4
1.2.1
Controlling the Electroosmotic Flow
4
1.2.2
Preventing Adsorption to the Capillary
5
1.3
Surfactants as Buffer Additives
6
1.3.1
Micellar Electrokinetic Chromatography
6
1.3.2 Microemulsion
Electrokinetic Chromatography
8
1.3.3
Nonaqueous Capillary Electrophoresis with Added
Surfactants
9
1.4
Surfactants for Analyte Preconcentration
9
1.4.1
Sweeping
10
1.4.2
Transient Trapping
11
1.4.3
Analyte Focusing by Micelle Collapse
12
1.4.4
Micelle to Solvent Stacking
12
1.4.5
Combinations of Preconcentration Methods
12
1.4.6
Cloud Point Extraction
12
1.5
Surfactants and Detection in
CE
14
1.5.1
Mass Spectrometry
14
1.5.2
Electrochemical Detection
15
1.6
Conclusions
16
References
17
vi
CONTENTS
2 Sample
Stacking: A Versatile Approach for Analyte Enrichment
in
CE
and Microchip-CE
23
Bruno
Perlaţii,
Emanuel
Carrilho,
and Fernando Armani
Aguiar
2.1
Introduction
23
2.2
Isotachophoresis
24
2.3
Chromatography-Based Sample Stacking
25
2.4
Methods Based on Electrophoretic Mobility and Velocity Manipulation
(Electrophoretic Methods)
26
2.4.1
Field-Enhanced Sample Stacking
(FESS)
27
2.4.2
Field-Enhanced Sample Injection (FESI)
27
2.4.3
Large-Volume Sample Stacking (LVSS)
28
2.4.4
Dynamic
pH
Junction
28
2.5
Sample Stacking in Pseudo-Stationary Phases
29
2.5.1
Field-Enhanced Sample Stacking
29
2.5.2
Hydrodynamic Injection Techniques
30
2.5.2.1
Normal Stacking Mode (NSM)
30
2.5.2.2
Reverse Electrode Polarity Stacking Mode (REPSM)
30
2.5.2.3
Stacking with Reverse Migrating Micelles (SRMM)
30
2.5.2.4
Stacking Using Reverse Migrating Micelles
and a Water Plug (SRW)
31
2.5.2.5
High-Conductivity Sample Stacking (HCSS)
31
2.5.3
Electrokinetic Injection Techniques
32
2.5.3.1
Field-Enhanced Sample Injection (FESI-MEKC)
32
2.5.3.2
Field-Enhanced Sample Injection with Reverse
Migrating Micelles (FESI-RMM)
32
2.5.4
Sweeping
32
2.5.5
Combined Techniques
33
2.5.5.1
Dynamic
pH
Junction: Sweeping
33
2.5.5.2
Selective Exhaustive Injection
(SEI) 33
2.5.6
New Techniques
33
2.6
Stacking Techniques in Microchips
33
2.7
Concluding Remarks
36
References
37
3
Sampling and Quantitative Analysis in Capillary Electrophoresis
41
Petr Kubáň,
Andrus
Seiman, and Mihkel Kaljurand
3.1
Introduction
41
3.2
Injection Techniques in
CE
42
3.2.1
Hydrodynamic Sample Injection
43
3.2.1.1
Principle
43
3.2.1.2
Advantages and Performance
44
3.2.1.3
Disadvantages
44
3.2.2
Electrokinetic Sample Injection
44
3.2.2.1
Principle
44
3.2.2.2
Advantages and Performance
45
3.2.2.3
Disadvantages
45
3.2.3
Bias-Free Electrokinetic Injection
45
3.2.4
Extraneous Sample Introduction Accompanying Injections in
CE
46
3.2.5
Sample Stacking
48
3.2.5.1
Principle
48
3.2.5.2
Advantages and Performance
49
3.2.5.3
Disadvantages
50
3.2.6
Alternative Batch Sample Injection Techniques
50
CONTENTS
vii
3.2.6.1
Rotary-Type Injectors for
CE
50
3.2.6.2
Hydrodynamic Sample Splitting as Injection Method
for
CE
51
3.2.6.3
Electrokinetic Sample Splitting as Injection Method
for
CE
52
3.2.6.4
Dual-Opposite End Injection in
CE
52
3.3
Micromachined/Microchip Injection Devices
53
3.3.1
Droplet Sampler Based on Digital Microfluidics
53
3.3.2
Wire Loop Injection
54
3.4
Automated Flow Sample Injection and Hyphenated Systems
55
3.4.1
Introduction
55
3.4.2
Advantages and Performance
56
3.4.3
Disadvantages
57
3.5
Computerized Sampling and Data Analysis
57
3.6
Sampling in Portable
CE
Instrumentation
58
3.7
Quantitative Analysis in
CE
59
3.7.1
Introduction
59
3.7.2
Quantitative Analysis with
HD
Injection
59
3.7.3
Quantitative Analysis with EK Injection
60
3.7.4
Validation of the Developed
CE
Methods
61
3.7.5
Computer Data Treatment in Quantitative Analysis
61
3.8
Conclusions
62
References
62
Practical Considerations for the Design and Implementation of
High-Voltage Power Supplies for Capillary and Microchip Capillary
Electrophoresis
67
Lucas Blanes, Wendell Karlos TomazelU
Coltro, Renata
Mayumi
Saito,
Claudimir
Lucio do Lago,
Claude
Roux,
and Philip
Doble
4.1
Introduction
67
4.1.1
High-Voltage Fundamentals
67
4.1.2
Electroosmotic Flow Control
68
4.1.3
Technical Aspects
70
4.1.4
Construction of Bipolar HVPS from Unipolar HVPS
70
4.1.5
Safety Considerations
71
4.1.6
HVPS Commercially Available
71
4.1.7
Practical Considerations
72
4.1.8
Alternative Sources of HV
72
4.1.9
HVPS Controllers for MCE
72
4.2
High-Voltage Measurement
73
4.3
Concluding Remarks
74
References
74
5
Artificial Neural Networks in Capillary Electrophoresis
77
Josef Havel, Eladia
María Peña-Méndez,
and Alberto
Rojas-Hernández
5.1
Introduction
77
5.2
Optimization in
CE:
From Single Variable Approach Toward
Artificial Neural Networks
77
5.2.1
Limitations of Traditional Single Variable Approach
79
5.2.2
Multivariate Approach with Experimental Design and Response
Surface Modeling
79
5.2.2.1
Experimental Design
79
5.2.2.2
Response Surface Modeling
80
viii CONTENTS
5.3
Artificial Neural Networks in Electromigration
Methods
81
5.3.1
Introduction
—
Basic
Principles of ANN
81
5.3.2
Optimization Using a Combination of ED and ANN
82
5.3.2.1
Testing of ED-ANN Algorithm
83
5.3.2.2
Practical Applications of ED-ANN
83
5.3.3
Quantitative
CE
Analysis and Determination from
Overlapped Peaks
84
5.3.3.1
Evaluation of Calibration Plots in
CE
Using ANN
to Increase Precision of Analysis
84
5.3.3.2
ANN in Quantitative
CE
Analysis from
Overlapped Peaks
86
5.3.4
ANN in
CEC
and MEKC
86
5.3.5
ANN for Peptides Modeling
88
5.3.6
Classification and Fingerprinting
88
5.3.7
Other Applications
90
5.4
Conclusions
90
Acknowledgments
91
References
91
6
Improving the Separation in Microchip Electrophoresis by Surface
Modification
95
M. Teresa
Fernández-Abedul,
Isabel
Álvarez-Martos,
Francisco Javier
García Alonso,
and
Agustín Costa-García
6.1
Introduction
95
6.2
Strategies for Improving Separation
96
6.2.1
Selection of an Adequate Technique: ME
96
6.2.2
MicroChannel Design
96
6.2.3
Selection of an Appropriate ME Material
96
6.2.4
Optimization of the Working Conditions
97
6.2.5
Surface Modification
97
6.2.5.1
Surface Micro-and Nanostructuring
98
6.2.5.2
Employment of Energy Sources
99
6.2.5.3
Chemical Surface Modification
99
6.3
Chemical Modifiers
102
6.3.1
Surfactants
104
6.3.2
Ionic Liquids
105
6.3.3
Nanoparticles
108
6.3.4
Polymers
110
6.4
Conclusions
119
Acknowledgments
120
References
120
7
Capillary Electrophoretic Reactor and Microchip Capillary
Electrophoretic Reactor: Dissociation Kinetic Analysis Method
for Complexes Using Capillary Electrophoretic Separation
Process
127
Toru
Takahashi and Nobuhiko Iki
7.1
Introduction
127
7.2
Basic Concept of
CER
128
7.3
Dissociation Kinetic Analysis of Metal Complexes Using a CER
129
7.3.1
Determination of the Rate Constants of Dissociation of
1
:2 Complexes of Al3^ and Ga3* with an
Azo
Dye
Ligand
2,2 -Dihydroxyazobenzene-5,5 -Disulfonate
in a CER
130
CONTENTS ix
7.4
Expanding the Scope of the
CER
to Measurements of Fast
Dissociation Kinetics with a Half-Life from Seconds to
Dozens of Seconds: Dissociation Kinetic Analysis of Metal
Complexes Using a Microchip Capillary Electrophoretic
Reactor ^CER)
133
7.5
Expanding the Scope of the
CER
to the Measurement of Slow
Dissociation Kinetics with a Half-Life of Hours
135
7.5.1
Principle of LS-CER
135
7.5.2
Application of LS-CER to the TiaVbCatechin Complex
136
7.5.3
Application of LS-CER to the Ti(IV)-Tiron Complex
138
7.6
Expanding the Scope of
CER
to Measurement of the
Dissociation Kinetics of Biomolecular Complexes
139
7.6.1
Dissociation Kinetic Analysis of [SSB-ssDNA] Using
CER
139
7.7
Conclusions
142
References
142
8
Capacitively Coupled Contactless Conductivity Detection (C4D) Applied
to Capillary Electrophoresis
(CE)
and Microchip Electrophoresis (MCE)
145
José
Alberto
Fracassi
da Silva, Claudimir
Lucio do Lago,
Dosii
Pereira
de Jesus,
and Wendell
Karlos Tomazelli
Coltro
8.1
Introduction
145
8.2
Theory of C4D
145
8.2.1
Basic Principles of C4D
145
8.2.2
Simulation
146
8.2.3
Basic Equation for Sensitivity
147
8.2.4
Equivalent Circuit of
a CE-C4D
System
147
8.2.5
Practical Guidelines
148
8.3
C4D Applied to Capillary Electrophoresis
148
8.3.1
Instrumental Aspects in
CE
149
8.3.2
Coupling C4D with UV-Vis Photometric Detectors in
CE
149
8.3.3
Fundamental Studies in Capillary Electrophoresis Using C4D
149
8.3.4
Fundamental Studies on C4D
149
8.3.5
Applications
150
8.4
C4D Applied to Microchip Capillary Electrophoresis
151
8.4.1
Geometry of the Detection Electrodes
151
8.4.1.1
Embedded Electrodes
151
8.4.1.2
Attached Electrodes
153
8.4.1.3
External Electrodes
153
8.4.2
Applications
154
8.4.2.1
Bioanalytical Applications
154
8.4.2.2
On-Chip Enzymatic Reactions
155
8.4.2.3
Food Analysis
155
8.4.2.4
Explosives and Chemical Warfare Agents
155
8.4.2.5
Other Applications
156
8.5
Concluding Remarks
156
Acknowledgments
157
References
157
9
Capillary Electrophoresis with Electrochemical Detection
161
Blánaid
White
9.1
Principles of Electrochemical Detection
161
9.1.1
Amperometric Detection
161
9.1.2
Potentiometric Detection
162
χ
CONTENTS
9.1.3
Conductivity Detection
162
9.2
Interfacing Amperometric Detection to Capillary Electrophoresis
163
9.2.1
Off-Column Detection
163
9.2.2
End-Column Detection
164
9.2.3
Use of Multiple Detection Electrodes
165
9.2.4
Pulsed Amperometric Detection
166
9.2.5
Nonaqueous EC Detection
166
9.2.6
Electrode Material
166
9.2.7
Dual Conductivity and Amperometric Detection
167
9.3
Interfacing Electrochemical Detection to Microfluidic Capillary
Electrophoresis
168
9.3.1
End-Column Detection
168
9.3.2
Pulsed Amperometric Detection
169
9.3.3
Off-Channel Detection
169
9.3.4
Electrode Material
170
9.3.5
Portable
CE
and MCE Systems
170
9.3.6
Applications of CE-MCE with AD
171
9.3.7
Future Directions for CE-MCE with EC Detection
173
References
173
10
Overcoming Challenges in Using Microchip Electrophoresis
for Extended Monitoring Applications
177
Scott D.
N
oblit
t
and Charles S. Henry
10.1
Introduction
177
10.2
Background Electrolyte (BGE) Longevity
179
10.3
Achieving Rapid Sequential Injections
186
10.4
Robust Quantitation
192
10.5
Conclusions
197
References
198
11
Distinction of Coexisting Protein Conformations by Capillary
Electrophoresis
201
Hanno Stutz
11.1
Introduction
201
11.1.1
Theoretical Aspects of in vivo Protein Folding
202
11.2
Protein Misfolding and Induction of Unfolding
203
11.3
Conformational Pathologies
204
11.4
Distinction Between Conformations
205
11.5
Relevance of Conformations for Biotechnological Products
206
11.6
Conformational Elucidation
—
An Overview of Alternative
Methods to
CE
206
11.7
HPLC in Conformational Distinction
207
11.7.1
Intact Proteins
207
11.7.1.1
Re versed-Phase (RP)-HPLC
207
11.7.1.2
Size Exclusion
(SEC)-HPLC
208
11.7.1.3
Ion-Exchange-HPLC
208
11.7.2
HPLC with Detectors Sensitive for Conformations
and Aggregates
208
11.7.3
Peptides as Model Compounds for
Hydrophobie
Stationary Phases in HPLC
208
11.8
Capillary Electrophoresis
(CE)
in Conformational Separations
209
11.8.1
Fundamental Aspects and Survey of Pitfalls
209
CONTENTS xi
11.8.2 Electrophoretic
Mobility of
Proteins 210
11.8.3
Peak Profiles and Derivable Thermodynamic Aspects
of Protein
Re-AJnfolding
211
11.8.4
Dipeptides as a Case Study for Isomerization
213
11.8.5
Denaturation Factors and Strategies Applied in
CE
214
11.8.5.1
Separation Electrolyte, Injection Solution, and
Sample Storage
215
11.8.5.2
Denaturation by Urea, Dithiothreitol, and GdmCl
215
11.8.5.3
Effects of
pH
and Organic Solvents
216
11.8.5.4
Temperature
216
11.8.5.5
Electrical Field
218
11.8.5.6
Detergents
218
11.8.5.7
Ligands and Ions
—
Case Studies on Potential
Amyloidogenic
ß2m 221
11.8.6 ß-Amyloid Peptides 222
11.8.6.1
Prions
223
11.9
Comparison Between
CE
and HPLC
223
11.10
Conclusive Discussion and Method Evaluation
223
11.10.1
General Aspects
223
11.10.2
HPLC
224
11.10.3
CE
224
References
225
12
Capillary Electromigration Techniques for the Analysis of Drugs
and Metabolites in Biological Matrices: A Critical Appraisal
229
Cristiane Masetto de
Gaitani, Anderson
Rodrigo
Moraes de Oliveira,
and
Pierina
Sueli Bonato
12.1
Introduction
229
12.2
Strategies to Obtain Reliable Capillary Electromigration Methods
for the
Bioanalysis
of Drugs and Metabolites
230
12.2.1
Selectivity and Detectability
230
12.2.1.1
Efficiency
232
12.2.1.2
Sample Preparation
233
12.2.1.3
Detectors
235
12.2.2
Repeatability
236
12.3
Selected Applications of Capillary Electromigration Techniques in
Bioanalysis
238
12.3.1
Pharmacokinetics and Metabolism Studies
238
12.3.2
Enantioselective Analysis of Drugs and Metabolites
240
12.3.3
Biopharmaceuticals or Biotechnology-Derived
Pharmaceuticals
240
12.3.4
Therapeutic Drug Monitoring
241
12.3.5
Clinical and Forensic Toxicology
242
12.4
Concluding Remarks
243
References
243
13
Capillary Electrophoresis and Multicolor
Fluorescent
DNA
Analysis in an
Optofluidic Chip
247
Chaitanya Dongre, Hugo J.
W.M. Hoekstra,
and
Markus
Pollnau
13.1
Introduction
247
13.2
Optofluidic Integration in an Electrophoretic Microchip
248
xii CONTENTS
13.2.1
Sample Fabrication
248
13.2.2
Optofluidic Characterization
248
13.3
Fluorescence Monitoring of
On-Chip DNA
Separation
249
13.3.1
Experimental Materials and Methods
249
13.3.2
Experimental Results and Analysis
250
13.4
Toward Ultrasensitive Fluorescence Detection
253
13.4.1
Optimization of the Experimental Setup
253
13.4.2
All-Numerical
Postprocessed
Noise Filtering
253
13.5
Multicolor Fluorescent
DNA
Analysis
255
13.5.1
Dual-Point, Dual-Wavelength Fluorescence Monitoring
256
13.5.2
Modulation-Frequency Encoded Multiwavelength
Fluorescence Sensing
259
13.5.3
Application to Multiplex Ligation-Dependent Probe
Amplification
260
13.6
Conclusions and Outlook
263
Acknowledgments
264
References
264
14
Capillary Electrophoresis of Intact I Infract ¡«mated Heparin
and Related Impurities
267
Robert Weinberger
14.1
Introduction
267
14.2
Capillary Electrophoresis and Heparin
269
14.3
Method Development in Capillary
Electrophoresis
269
14.4
Common Impurities Found in Heparin
272
14.5
The United States Pharmacoepia and
CE
of Heparin
273
14.6
Interlaboratory Collaborative Study
274
14.7
Conclusions
275
References
275
15
Microchip Capillary Electrophoresis for In Situ Planetary
Exploration
277
Peter A. Willis and Amanda
M
.
Stockton
15.1
Introduction
277
15.2
Instrument Design
279
15.3
Instrumentation External to the
Microdevice 280
15.4 Microdevice
Basics
282
15.4.1
All-Glass Devices for Microchip Capillary Electrophoresis
282
15.4.2
Three-Layer Hybrid Substrate Glass-PDMS Devices
for Fluidic Manipulation
284
15.4.3
Integrating Fluidic Manipulation with Electrophoresis
285
15.5 Microdevices
and their Applications
285
15.5.1 Microdevices
with Bus-
Val ve
Control of Microfluidic
Manipulation
285
15.5.2
Automaton Devices for Programmable Microfluidic
Manipulation
288
15.6
Conclusions
289
Acknowledgments
290
References
290
CONTENTS
хні
16 Rapid
Analysis of Charge Heterogeneity of Monoclonal Antibodies by
Capillary Zone Electrophoresis and Imaged Capillary Isoelectric
Focusing
293
Yan He, Jim Mo, Xiaoping He, and Margaret
Ruesch
16.1
Introduction
293
16.2
Capillary Zone Electrophoresis
295
16.2.1
Separation and Detection Strategy
295
16.2.1.1
Capillary Construction
295
16.2.1.2
Buffer Composition
295
16.2.1.3
Separation Voltage and Field Strength
297
16.2.1.4
Detection
297
16.2.2
Applications
297
16.3
Imaged Capillary Isoelectric Focusing
299
16.3.1
Method Development and Optimization
299
16.3.1.1
Carrier Ampholyte
300
16.3.1.2
Additives
300
16.3.1.3
Focusing Time and Voltage
300
16.3.1.4
Salt Concentration
303
16.3.1.5
Protein Concentration
303
16.3.2
iCE Method Validation
303
16.3.3
Applications
304
16.3.3.1
Cell Line Development Support
304
16.3.3.2
Formulation Screening
304
16.3.3.3
Characterization of Acidic Species
305
16.4
Summary
306
References
307
17
Application of Capillary Electrophoresis for High-Throughput
Screening of Drug Metabolism
309
Roman
Reminek,
Jochen
Pauwels,
Хи
Wang,
Jos Hoogmartens,
Zdeněk
Glatz, and Ann Van Schepdael
17.1
Introduction
309
17.2 Sample Deproteinization 310
17.3
On-line
Preconcentration 311
17.4
Method
Development 312
17.4.1 Dynamic
Coating of Inner Capillary Wall
312
17.4.2
Short-End Injection
313
17.4.3
Strong Rinsing Procedure
313
17.4.4
Optimized Method
313
17.5
Method Validation
314
17.6
Method Applications
315
17.6.1
Drug Stability Screening
315
17.6.2
Kinetic Study
316
17.7
Conclusions
316
Acknowledgments
317
References
317
18
Electrokinetic Transport of Microparticles in the
Microfluid
¡c·
Enclosure Domain
319
Qian Liang, Chun Yang, andJianmin
Miao
18.1
Introduction
319
18.2
Numerical Model
320
xW CONTENTS
18.2.1
Problem Description
320
18.2.2
Mathematical Model
320
18.3
Numerical Simulation
322
18.4
Results and Discussion
322
18.4.1
Particle Transport in the Bulk Row
322
18.4.1.1
The Particle Velocity in the Confined Domain
322
18.4.1.2
The Trajectory of Particle Transport within the
Confined Domain
323
18.4.1.3
The Effect of Sidewall
Zeta
Potential on the Particle
Motion
324
18.4.2
Particle Transport Near the Bottom Surface
325
18.4.2.1
The Effect of the EDL Thickness on the Near Wall
Motion of the Particle
325
18.4.2.2
The Effect of Surface Charge on the Near Wall
Transport of the Particle
325
18.5
Model Application
325
18.6
Conclusions
326
References
326
19
Integration of Nanomaterials in Capillary and Microchip
Electrophoresis as a Flexible Tool
327
Germán
A. Messina, Roberto A. Olsina, and Patricia W.
Stege
19.1
Introduction
327
19.1.1
Historical Overview of Nanotechnology
327
19.1.2
Nanomaterials
329
19.1.2.1
Carbon-Based Nanomaterials
329
19.1.2.2
Metal-Based Nanomaterials
329
19.1.2.3
Dendrimers
331
19.1.2.4
Composites
331
19.2
Nanomaterials in Analytical Chemistry
332
19.3
Nanoparticles in Capillary Electrophoresis
333
19.3.1
Nanoparticles in Capillary Electrochromatography
334
19.3.1.1
Organic Nanoparticles
334
19.3.1.2
Inorganic Particles
338
19.3.2
Nanoparticles in Electrokinetic Chromatography
342
19.3.2.1
Organic Nanoparticles
343
19.3.2.2
Inorganic Particles
347
19.3.3
Nanoparticles in Microchip Electrochromatography
349
19.4
Conclusions
352
References
353
20
Microchip Capillary Electrophoresis to Study the Binding of Ligands to
Teicoplanin Derivatized on Magnetic Beads
359
Toni Ann
Riveros, Roger
Lo, Xìaojun
Liu,
Marisol Salgado,
Hector
Carmona,
and
Frank A. Gomez
20.1
Introduction
359
20.2
Experimental Section
359
20.2.1
Materials and Methods
359
20.2.1.1
Equipment and Fabrication of the Microchips
360
20.2.1.2
Surface Coating
360
20.2.1.3
Teic Immobilization on Magnetic Microbeads
360
20.2.2
Procedures
360
20.2.2.1
FAMCE Studies
360
CONTENTS xv
20.2.2.2 MFAC
Studies
361
20.3
Results and Discussion
361
20.3.1
FAMCE Studies
361
20.3.1.1
Nonspecific Adsorption Resistance
361
20.3.1.2
The Binding of DA3 to Teic-Beads
362
20.3.2
MFAC Studies
363
20.4
Conclusions
364
Acknowledgments
365
References
365
21
Glycomic Profiling Through Capillary Electrophoresis and Microchip
Capillary Electrophoresis
367
Yehia Mechref
21.1
Introduction
367
21.1.1
Release of yV-Glycans from Glycoproteins
368
21.1.1.1
Chemical Release
368
21.1.1.2
Enzymatic Release
368
21.1.2
Release of O-Glycans from Glycoproteins
368
21.1.2.1
Chemical Release
368
21.1.2.2
Enzymatic Release
369
21.2
General Considerations of Capillary Electrophoresis and Microchip
Capillary Electrophoresis of Glycans
369
21.2.1
Capillary Electrophoresis-Laser-Induced Fluorescence
(CE-LIF) Analysis of Glycans
369
21.2.2
Interfacing Capillary Electrophoresis and Capillary
Electrochromatography to Mass Spectrometry
372
21.2.2.1
ESI Interfaces for Capillary Electrophoresis
372
21.2.2.2
Sheathless-Flow Interface
372
21.2.2.3
Sheath-How Interface
373
21.2.2.4
Liquid Junction Interface
373
21.2.2.5
MALDI Interfaces for Capillary Electrophoresis
373
21.2.2.6
CE-MS Analysis of Glycans
374
21.2.2.7
Glycomic Analysis by CEC-MS
376
21.3
Microchip Capillary Electrophoresis
377
21.4
Conclusions
380
References
381
INDEX
385
Explores the benefits and limitations of
the latest capillary electrophoresis techniques
Capillary electrophoresis and microchip capillary eiectrophoresis are powerful analytical tools that are
particularly suited for separating and analyzing biomolecules. In comparison with traditional analytical
techniques, capillary electrophoresis and microchip capillary electrophoresis offer the benefits of speed,
small sample and solvent consumption, low cost, and the possibility of miniaturization.
With contributions from a team of leading analytical scientists, Capillary Electrophoresis and Microchip
Capillary Electrophoresis explains how researchers can take full advantage of all the latest techniques,
emphasizing applications in which capillary electrophoresis has proven superiority over other analytical
approaches. The authors not only explore the benefits of each technique, but also the limitations, enabling
readers to choose the most appropriate technique to analyze a particular sample.
The book s twenty-one chapters explore fundamental aspects of electrophoretically driven separations,
instrumentation, sampling techniques, separation modes, detection systems, optimization strategies for
method development, and applications. Specific topics include:
•
Critical evaluation of the use of surfactants in capillary electrophoresis
•
Sampling and quantitative analysis in capillary electrophoresis
•
Capillary electrophoresis with electrochemical detection
•
Overcoming challenges in using microchip electrophoresis for
extended monitoring applications
•
Capillary electrophoresis of intact unfractionated heparin and related impurities
•
Microchip capillary electrophoresis for in situ planetary exploration
Each chapter begins with an introduction and ends with conclusions as well as references to the primary
literature. Novices to the field will find this book an easy-to-follow introduction to core capillary
electrophoresis techniques and methods. More experienced investigators can turn to the book for
troubleshooting tips and expert advice to guide them through the most advanced applications.
CARLOS D.
GARCÍA, PhD,
is an Associate Professor of Analytical Chemistry at the University
of Texas at San Antonio. USA. His group is currently focused on the development of novel
bioanalytical strategies involving microfluidics and nanomaterials.
KARÍN Y.
CHUMBIMUNI-TORRES, PhD. is a Research Associate at the University of Texas at
San Antonio, USA. She is interested in pursuing the development of electrochemical biosensors and their
integration to microchip-based platforms.
EMANUEL CARRILHO, PhD,
is an Associate Professor at the University of
São
Paulo. Brazil. With more than
twenty-five years of experience in separation science, his group is focused on the development of analytical
methods and instrumentation for
bioanalyses.
Cover Design: John Wiley
&
Sons. Inc.
Cover Illustration: Courtesy of the authors
|
any_adam_object | 1 |
author2 | García, Carlos D. 1972- |
author2_role | edt |
author2_variant | c d g cd cdg |
author_GND | (DE-588)1037170717 |
author_facet | García, Carlos D. 1972- |
building | Verbundindex |
bvnumber | BV041104470 |
callnumber-first | T - Technology |
callnumber-label | TP248 |
callnumber-raw | TP248.25.C37 |
callnumber-search | TP248.25.C37 |
callnumber-sort | TP 3248.25 C37 |
callnumber-subject | TP - Chemical Technology |
classification_rvk | WC 3440 WC 4150 |
ctrlnum | (OCoLC)843751797 (DE-599)BVBBV041104470 |
dewey-full | 502.8/2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 502 - Miscellany |
dewey-raw | 502.8/2 |
dewey-search | 502.8/2 |
dewey-sort | 3502.8 12 |
dewey-tens | 500 - Natural sciences and mathematics |
discipline | Allgemeine Naturwissenschaft Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01877nam a2200421zc 4500</leader><controlfield tag="001">BV041104470</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140417 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130624s2013 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2012031794</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470572177</subfield><subfield code="c">cloth</subfield><subfield code="9">978-0-470-57217-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470572175</subfield><subfield code="c">cloth</subfield><subfield code="9">0-470-57217-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)843751797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041104470</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.25.C37</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">502.8/2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 3440</subfield><subfield code="0">(DE-625)148085:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 4150</subfield><subfield code="0">(DE-625)148092:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Capillary electrophoresis and microchip capillary electrophoresis</subfield><subfield code="b">principles, applications, and limitations</subfield><subfield code="c">edited by Carlos D. García ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 394 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capillary electrophoresis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microtechnique</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kapillarelektrophorese</subfield><subfield code="0">(DE-588)4290002-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kapillarelektrophorese</subfield><subfield code="0">(DE-588)4290002-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">García, Carlos D.</subfield><subfield code="d">1972-</subfield><subfield code="0">(DE-588)1037170717</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026080794&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026080794&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026080794</subfield></datafield></record></collection> |
id | DE-604.BV041104470 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:39:43Z |
institution | BVB |
isbn | 9780470572177 0470572175 |
language | English |
lccn | 2012031794 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026080794 |
oclc_num | 843751797 |
open_access_boolean | |
owner | DE-703 DE-634 DE-11 |
owner_facet | DE-703 DE-634 DE-11 |
physical | XXII, 394 S. Ill., graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Wiley |
record_format | marc |
spelling | Capillary electrophoresis and microchip capillary electrophoresis principles, applications, and limitations edited by Carlos D. García ... Hoboken, NJ Wiley 2013 XXII, 394 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Capillary electrophoresis Microtechnique Kapillarelektrophorese (DE-588)4290002-5 gnd rswk-swf Kapillarelektrophorese (DE-588)4290002-5 s DE-604 García, Carlos D. 1972- (DE-588)1037170717 edt Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026080794&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026080794&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Capillary electrophoresis and microchip capillary electrophoresis principles, applications, and limitations Capillary electrophoresis Microtechnique Kapillarelektrophorese (DE-588)4290002-5 gnd |
subject_GND | (DE-588)4290002-5 |
title | Capillary electrophoresis and microchip capillary electrophoresis principles, applications, and limitations |
title_auth | Capillary electrophoresis and microchip capillary electrophoresis principles, applications, and limitations |
title_exact_search | Capillary electrophoresis and microchip capillary electrophoresis principles, applications, and limitations |
title_full | Capillary electrophoresis and microchip capillary electrophoresis principles, applications, and limitations edited by Carlos D. García ... |
title_fullStr | Capillary electrophoresis and microchip capillary electrophoresis principles, applications, and limitations edited by Carlos D. García ... |
title_full_unstemmed | Capillary electrophoresis and microchip capillary electrophoresis principles, applications, and limitations edited by Carlos D. García ... |
title_short | Capillary electrophoresis and microchip capillary electrophoresis |
title_sort | capillary electrophoresis and microchip capillary electrophoresis principles applications and limitations |
title_sub | principles, applications, and limitations |
topic | Capillary electrophoresis Microtechnique Kapillarelektrophorese (DE-588)4290002-5 gnd |
topic_facet | Capillary electrophoresis Microtechnique Kapillarelektrophorese |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026080794&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026080794&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT garciacarlosd capillaryelectrophoresisandmicrochipcapillaryelectrophoresisprinciplesapplicationsandlimitations |