Multibody system dynamics, robotics and control:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Wien [u.a.]
Springer
2012
|
Schlagworte: | |
Online-Zugang: | BTU01 FHA01 FHI01 FHR01 FKE01 FWS01 FWS02 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robo |
Beschreibung: | 1 Online-Ressource (315 p.) |
ISBN: | 9783709112892 |
DOI: | 10.1007/978-3-7091-1289-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV041097135 | ||
003 | DE-604 | ||
005 | 20210602 | ||
006 | a |||| 10||| | ||
007 | cr|uuu---uuuuu | ||
008 | 130619s2012 |||| o||u| ||||||eng d | ||
020 | |a 9783709112892 |c Online |9 978-3-7091-1289-2 | ||
024 | 7 | |a 10.1007/978-3-7091-1289-2 |2 doi | |
035 | |a (OCoLC)874341582 | ||
035 | |a (DE-599)BVBBV041097135 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-898 |a DE-634 |a DE-573 |a DE-Aug4 |a DE-859 |a DE-573 |a DE-863 |a DE-862 | ||
082 | 0 | |a 629.8 | |
245 | 1 | 0 | |a Multibody system dynamics, robotics and control |
264 | 1 | |a Wien [u.a.] |b Springer |c 2012 | |
300 | |a 1 Online-Ressource (315 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robo | ||
505 | 0 | |a Multibody System Dynamics, Robotics and Control; Preface; Acknowledgements; Contents; Chapter 1: Time-Optimal Path Planning Along Specified Trajectories; 1.1 Introduction; 1.2 Spatial Paths in Multibody Systems; 1.2.1 Kinetostatic Transmission Elements; 1.2.2 Spatial Motion Parametrization; 1.2.3 Joint Motion Parametrization; 1.3 Time-Optimal Motion Generation; 1.3.1 Formulation of the Time-Optimal Problem; 1.3.2 Computation of the Dynamic Constraints; 1.3.3 Solution of the Time-Optimal Problem; 1.4 Application Examples; 1.4.1 Loading Cycles of Backhoe Excavators | |
505 | 0 | |a 1.4.2 Waiter-Motion Problem for a Given Spatial Path1.5 Conclusions; References; Chapter 2: Efficient Online Computation of Smooth Trajectories Along Geometric Paths for Robotic Manipulators; 2.1 Introduction; 2.2 Problem Statement; 2.2.1 Optimal Control Problem; 2.3 Optimal System Inputs; 2.3.1 Discretization; 2.3.2 Input Bounds; 2.3.3 Not Allowed States; 2.4 A Discrete Online Algorithm; 2.4.1 Test Trajectories; 2.4.2 The Algorithm; 2.4.3 Realtime Capability; 2.5 Example; 2.6 Conclusion; References | |
505 | 0 | |a Chapter 3: Constraint and Dynamic Analysis of Compliant Mechanisms with a Flexible Multibody Modelling Approach3.1 Introduction; 3.2 Six DOF Manipulator; 3.3 Numerical Modelling; 3.3.1 Spatial Flexible Beam Element; 3.3.2 Kinematic Model and Exact Constrained Design; 3.3.3 Dynamic Model and Natural Frequencies with Mode Shapes; 3.4 Experimental Results; 3.5 Conclusions; References; Chapter 4: Sensor Data Fusion for the Localization and Position Control of One Kind of Omnidirectional Mobile Robots; 4.1 Introduction; 4.2 Some Common Concepts; 4.2.1 Control Points and Measurement | |
505 | 0 | |a 4.2.2 Navigation Strategies and Classification4.2.3 Controller and Robot Position Control; 4.2.4 Why Do We Need Localization?; 4.3 Position Measurement and Control; 4.3.1 Overall Position Control Scheme; 4.3.2 State Variable Feedback; 4.3.3 Internal Odometer and Its Enhancement; 4.3.3.1 Odometry Mechanism; 4.3.3.2 Odometry Error Correction; 4.3.4 External North Star Measurements; 4.3.4.1 The North Star Navigation System; 4.3.4.2 North Star Calibration; 4.4 Localization through Sensor Data Fusion in Extended Kalman Filters; 4.4.1 Sensor Data Fusion | |
505 | 0 | |a 4.4.2 Kalman Filter and Extended Kalman Filter4.4.3 Robotino Sensor Data Fusion for Localization; 4.4.4 Data Flow Analysis; 4.4.5 Uncertainty Analysis; 4.5 Experiments and Results Analysis; 4.5.1 Experimental Setup; 4.5.1.1 Environment Requirements; 4.5.1.2 Experiment Arrangement; 4.5.2 Localization and Position Control Experiments; 4.5.2.1 Open Loop Position Control; 4.5.2.2 Odometry Based Feedback Position Control; 4.5.2.3 Localization and Closed Loop Position Control with Odometry and North Star Data Fusion in EKF; 4.5.3 Result Analysis and Comparisons; 4.6 Conclusions; References | |
505 | 0 | |a Chapter 5: Modelling and Control of Infinite-Dimensional Mechanical Systems: A Port-Hamiltonian Approach | |
650 | 4 | |a Robotics / Congresses | |
650 | 4 | |a Robotics | |
650 | 4 | |a System theory | |
653 | |a Electronic books | ||
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
700 | 1 | |a Gattringer, Hubert |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-7091-1288-5 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-7091-1289-2 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026073627&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026073627&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-ENG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-026073627 | ||
966 | e | |u https://doi.org/10.1007/978-3-7091-1289-2 |l BTU01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7091-1289-2 |l FHA01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7091-1289-2 |l FHI01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7091-1289-2 |l FHR01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7091-1289-2 |l FKE01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7091-1289-2 |l FWS01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7091-1289-2 |l FWS02 |p ZDB-2-ENG |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 908970 |
---|---|
_version_ | 1824555089891688448 |
adam_text | MULTIBODY SYSTEM DYNAMICS, ROBOTICS AND CONTROL
/
: 2013
TABLE OF CONTENTS / INHALTSVERZEICHNIS
TIME-OPTIMAL PATH PLANNING ALONG SPECIFIED TRAJECTORIES
EFFICIENT ONLINE COMPUTATION OF SMOOTH TRAJECTORIES ALONG GEOMETRIC
PATHS FOR ROBOTIC MANIPULATORS
CONSTRAINT AND DYNAMIC ANALYSIS OF COMPLIANT MECHANISMS WITH A FLEXIBLE
MULTIBODY MODELLING APPROACH. - SENSOR DATA FUSION FOR THE LOCALIZATION
AND POSITION CONTROL OF ONE KIND OF OMNIDIRECTIONAL MOBILE ROBOTS. -
MODELLING AND CONTROL OF INFINITE-DIMENSIONAL MECHANICAL SYSTEMS: A
PORT-HAMILTONIAN APPROACH. - PASSIVITY-BASED TRACKING CONTROL OF A
FLEXIBLE LINK ROBOT. - NORM-OPTIMAL ITERATIVE LEARNING CONTROL FOR A
PNEUMATIC PARALLEL ROBOT. - BALANCE AND POSTURE CONTROL FOR BIPED
ROBOTS. - ROBOT-BASED TESTING OF TOTAL JOINT REPLACEMENTS. - DYNAMICS
AND CONTROL OF THE BIPED ROBOT LOLA. - AUTOMATED KINEMATICS REASONING
FOR WHEELED MOBILE ROBOTS. - AUTOMATIC PARAMENTER IDENTIFICATION FOR
MECHATRONIC SYSTEMS. - CRANE OPERATORS TRAINING BASED ON THE REAL-TIME
MULTIBODY SIMULATION. - ON A MOMENTUM BASED VERSION OF LAGRANGE S
EQUATIONS. - VIBRATION CONTROL AND STRUCTURAL DAMPING OF A ROTATING BEAM
BY USING PIEZOELECTRIC ACTUATORS. - MULTIBODY DYNAMICS APPROACHES TO
BIOMECHANICAL APPLICATIONS TO HUMAN MOTION TASKS. - APPLICATION EXAMPLES
OF WIRE ROBOTS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
MULTIBODY SYSTEM DYNAMICS, ROBOTICS AND CONTROL
/
: 2013
ABSTRACT / INHALTSTEXT
THE VOLUME CONTAINS 19 CONTRIBUTIONS BY INTERNATIONAL EXPERTS IN THE
FIELD OF MULTIBODY SYSTEM DYNAMICS, ROBOTICS AND CONTROL. THE BOOK AIMS
TO BRIDGE THE GAP BETWEEN THE MODELING OF MECHANICAL SYSTEMS BY MEANS OF
MULTIBODY DYNAMICS FORMULATIONS AND ROBOTICS. IN THE CLASSICAL APPROACH,
A MULTIBODY DYNAMICS MODEL CONTAINS A VERY HIGH LEVEL OF DETAIL,
HOWEVER, THE APPLICATION OF SUCH MODELS TO ROBOTICS OR CONTROL IS
USUALLY LIMITED. THE PAPERS AIM TO CONNECT THE DIFFERENT SCIENTIFIC
COMMUNITIES IN MULTIBODY DYNAMICS, ROBOTICS AND CONTROL. MAIN TOPICS ARE
FLEXIBLE MULTIBODY SYSTEMS, HUMANOID ROBOTS, ELASTIC ROBOTS, NONLINEAR
CONTROL, OPTIMAL PATH PLANNING, AND IDENTIFICATION
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author2 | Gattringer, Hubert |
author2_role | edt |
author2_variant | h g hg |
author_facet | Gattringer, Hubert |
building | Verbundindex |
bvnumber | BV041097135 |
collection | ZDB-2-ENG |
contents | Multibody System Dynamics, Robotics and Control; Preface; Acknowledgements; Contents; Chapter 1: Time-Optimal Path Planning Along Specified Trajectories; 1.1 Introduction; 1.2 Spatial Paths in Multibody Systems; 1.2.1 Kinetostatic Transmission Elements; 1.2.2 Spatial Motion Parametrization; 1.2.3 Joint Motion Parametrization; 1.3 Time-Optimal Motion Generation; 1.3.1 Formulation of the Time-Optimal Problem; 1.3.2 Computation of the Dynamic Constraints; 1.3.3 Solution of the Time-Optimal Problem; 1.4 Application Examples; 1.4.1 Loading Cycles of Backhoe Excavators 1.4.2 Waiter-Motion Problem for a Given Spatial Path1.5 Conclusions; References; Chapter 2: Efficient Online Computation of Smooth Trajectories Along Geometric Paths for Robotic Manipulators; 2.1 Introduction; 2.2 Problem Statement; 2.2.1 Optimal Control Problem; 2.3 Optimal System Inputs; 2.3.1 Discretization; 2.3.2 Input Bounds; 2.3.3 Not Allowed States; 2.4 A Discrete Online Algorithm; 2.4.1 Test Trajectories; 2.4.2 The Algorithm; 2.4.3 Realtime Capability; 2.5 Example; 2.6 Conclusion; References Chapter 3: Constraint and Dynamic Analysis of Compliant Mechanisms with a Flexible Multibody Modelling Approach3.1 Introduction; 3.2 Six DOF Manipulator; 3.3 Numerical Modelling; 3.3.1 Spatial Flexible Beam Element; 3.3.2 Kinematic Model and Exact Constrained Design; 3.3.3 Dynamic Model and Natural Frequencies with Mode Shapes; 3.4 Experimental Results; 3.5 Conclusions; References; Chapter 4: Sensor Data Fusion for the Localization and Position Control of One Kind of Omnidirectional Mobile Robots; 4.1 Introduction; 4.2 Some Common Concepts; 4.2.1 Control Points and Measurement 4.2.2 Navigation Strategies and Classification4.2.3 Controller and Robot Position Control; 4.2.4 Why Do We Need Localization?; 4.3 Position Measurement and Control; 4.3.1 Overall Position Control Scheme; 4.3.2 State Variable Feedback; 4.3.3 Internal Odometer and Its Enhancement; 4.3.3.1 Odometry Mechanism; 4.3.3.2 Odometry Error Correction; 4.3.4 External North Star Measurements; 4.3.4.1 The North Star Navigation System; 4.3.4.2 North Star Calibration; 4.4 Localization through Sensor Data Fusion in Extended Kalman Filters; 4.4.1 Sensor Data Fusion 4.4.2 Kalman Filter and Extended Kalman Filter4.4.3 Robotino Sensor Data Fusion for Localization; 4.4.4 Data Flow Analysis; 4.4.5 Uncertainty Analysis; 4.5 Experiments and Results Analysis; 4.5.1 Experimental Setup; 4.5.1.1 Environment Requirements; 4.5.1.2 Experiment Arrangement; 4.5.2 Localization and Position Control Experiments; 4.5.2.1 Open Loop Position Control; 4.5.2.2 Odometry Based Feedback Position Control; 4.5.2.3 Localization and Closed Loop Position Control with Odometry and North Star Data Fusion in EKF; 4.5.3 Result Analysis and Comparisons; 4.6 Conclusions; References Chapter 5: Modelling and Control of Infinite-Dimensional Mechanical Systems: A Port-Hamiltonian Approach |
ctrlnum | (OCoLC)874341582 (DE-599)BVBBV041097135 |
dewey-full | 629.8 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8 |
dewey-search | 629.8 |
dewey-sort | 3629.8 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
doi_str_mv | 10.1007/978-3-7091-1289-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06021nmm a2200577zc 4500</leader><controlfield tag="001">BV041097135</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210602 </controlfield><controlfield tag="006">a |||| 10||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130619s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783709112892</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-7091-1289-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-7091-1289-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874341582</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041097135</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-898</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multibody system dynamics, robotics and control</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wien [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (315 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robo</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Multibody System Dynamics, Robotics and Control; Preface; Acknowledgements; Contents; Chapter 1: Time-Optimal Path Planning Along Specified Trajectories; 1.1 Introduction; 1.2 Spatial Paths in Multibody Systems; 1.2.1 Kinetostatic Transmission Elements; 1.2.2 Spatial Motion Parametrization; 1.2.3 Joint Motion Parametrization; 1.3 Time-Optimal Motion Generation; 1.3.1 Formulation of the Time-Optimal Problem; 1.3.2 Computation of the Dynamic Constraints; 1.3.3 Solution of the Time-Optimal Problem; 1.4 Application Examples; 1.4.1 Loading Cycles of Backhoe Excavators</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1.4.2 Waiter-Motion Problem for a Given Spatial Path1.5 Conclusions; References; Chapter 2: Efficient Online Computation of Smooth Trajectories Along Geometric Paths for Robotic Manipulators; 2.1 Introduction; 2.2 Problem Statement; 2.2.1 Optimal Control Problem; 2.3 Optimal System Inputs; 2.3.1 Discretization; 2.3.2 Input Bounds; 2.3.3 Not Allowed States; 2.4 A Discrete Online Algorithm; 2.4.1 Test Trajectories; 2.4.2 The Algorithm; 2.4.3 Realtime Capability; 2.5 Example; 2.6 Conclusion; References</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Chapter 3: Constraint and Dynamic Analysis of Compliant Mechanisms with a Flexible Multibody Modelling Approach3.1 Introduction; 3.2 Six DOF Manipulator; 3.3 Numerical Modelling; 3.3.1 Spatial Flexible Beam Element; 3.3.2 Kinematic Model and Exact Constrained Design; 3.3.3 Dynamic Model and Natural Frequencies with Mode Shapes; 3.4 Experimental Results; 3.5 Conclusions; References; Chapter 4: Sensor Data Fusion for the Localization and Position Control of One Kind of Omnidirectional Mobile Robots; 4.1 Introduction; 4.2 Some Common Concepts; 4.2.1 Control Points and Measurement</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">4.2.2 Navigation Strategies and Classification4.2.3 Controller and Robot Position Control; 4.2.4 Why Do We Need Localization?; 4.3 Position Measurement and Control; 4.3.1 Overall Position Control Scheme; 4.3.2 State Variable Feedback; 4.3.3 Internal Odometer and Its Enhancement; 4.3.3.1 Odometry Mechanism; 4.3.3.2 Odometry Error Correction; 4.3.4 External North Star Measurements; 4.3.4.1 The North Star Navigation System; 4.3.4.2 North Star Calibration; 4.4 Localization through Sensor Data Fusion in Extended Kalman Filters; 4.4.1 Sensor Data Fusion</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">4.4.2 Kalman Filter and Extended Kalman Filter4.4.3 Robotino Sensor Data Fusion for Localization; 4.4.4 Data Flow Analysis; 4.4.5 Uncertainty Analysis; 4.5 Experiments and Results Analysis; 4.5.1 Experimental Setup; 4.5.1.1 Environment Requirements; 4.5.1.2 Experiment Arrangement; 4.5.2 Localization and Position Control Experiments; 4.5.2.1 Open Loop Position Control; 4.5.2.2 Odometry Based Feedback Position Control; 4.5.2.3 Localization and Closed Loop Position Control with Odometry and North Star Data Fusion in EKF; 4.5.3 Result Analysis and Comparisons; 4.6 Conclusions; References</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Chapter 5: Modelling and Control of Infinite-Dimensional Mechanical Systems: A Port-Hamiltonian Approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics / Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gattringer, Hubert</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-7091-1288-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-7091-1289-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026073627&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026073627&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026073627</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7091-1289-2</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7091-1289-2</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7091-1289-2</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7091-1289-2</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7091-1289-2</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7091-1289-2</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7091-1289-2</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV041097135 |
illustrated | Not Illustrated |
indexdate | 2025-02-20T07:02:07Z |
institution | BVB |
isbn | 9783709112892 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026073627 |
oclc_num | 874341582 |
open_access_boolean | |
owner | DE-898 DE-BY-UBR DE-634 DE-573 DE-Aug4 DE-859 DE-573 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-898 DE-BY-UBR DE-634 DE-573 DE-Aug4 DE-859 DE-573 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (315 p.) |
psigel | ZDB-2-ENG |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Springer |
record_format | marc |
spellingShingle | Multibody system dynamics, robotics and control Multibody System Dynamics, Robotics and Control; Preface; Acknowledgements; Contents; Chapter 1: Time-Optimal Path Planning Along Specified Trajectories; 1.1 Introduction; 1.2 Spatial Paths in Multibody Systems; 1.2.1 Kinetostatic Transmission Elements; 1.2.2 Spatial Motion Parametrization; 1.2.3 Joint Motion Parametrization; 1.3 Time-Optimal Motion Generation; 1.3.1 Formulation of the Time-Optimal Problem; 1.3.2 Computation of the Dynamic Constraints; 1.3.3 Solution of the Time-Optimal Problem; 1.4 Application Examples; 1.4.1 Loading Cycles of Backhoe Excavators 1.4.2 Waiter-Motion Problem for a Given Spatial Path1.5 Conclusions; References; Chapter 2: Efficient Online Computation of Smooth Trajectories Along Geometric Paths for Robotic Manipulators; 2.1 Introduction; 2.2 Problem Statement; 2.2.1 Optimal Control Problem; 2.3 Optimal System Inputs; 2.3.1 Discretization; 2.3.2 Input Bounds; 2.3.3 Not Allowed States; 2.4 A Discrete Online Algorithm; 2.4.1 Test Trajectories; 2.4.2 The Algorithm; 2.4.3 Realtime Capability; 2.5 Example; 2.6 Conclusion; References Chapter 3: Constraint and Dynamic Analysis of Compliant Mechanisms with a Flexible Multibody Modelling Approach3.1 Introduction; 3.2 Six DOF Manipulator; 3.3 Numerical Modelling; 3.3.1 Spatial Flexible Beam Element; 3.3.2 Kinematic Model and Exact Constrained Design; 3.3.3 Dynamic Model and Natural Frequencies with Mode Shapes; 3.4 Experimental Results; 3.5 Conclusions; References; Chapter 4: Sensor Data Fusion for the Localization and Position Control of One Kind of Omnidirectional Mobile Robots; 4.1 Introduction; 4.2 Some Common Concepts; 4.2.1 Control Points and Measurement 4.2.2 Navigation Strategies and Classification4.2.3 Controller and Robot Position Control; 4.2.4 Why Do We Need Localization?; 4.3 Position Measurement and Control; 4.3.1 Overall Position Control Scheme; 4.3.2 State Variable Feedback; 4.3.3 Internal Odometer and Its Enhancement; 4.3.3.1 Odometry Mechanism; 4.3.3.2 Odometry Error Correction; 4.3.4 External North Star Measurements; 4.3.4.1 The North Star Navigation System; 4.3.4.2 North Star Calibration; 4.4 Localization through Sensor Data Fusion in Extended Kalman Filters; 4.4.1 Sensor Data Fusion 4.4.2 Kalman Filter and Extended Kalman Filter4.4.3 Robotino Sensor Data Fusion for Localization; 4.4.4 Data Flow Analysis; 4.4.5 Uncertainty Analysis; 4.5 Experiments and Results Analysis; 4.5.1 Experimental Setup; 4.5.1.1 Environment Requirements; 4.5.1.2 Experiment Arrangement; 4.5.2 Localization and Position Control Experiments; 4.5.2.1 Open Loop Position Control; 4.5.2.2 Odometry Based Feedback Position Control; 4.5.2.3 Localization and Closed Loop Position Control with Odometry and North Star Data Fusion in EKF; 4.5.3 Result Analysis and Comparisons; 4.6 Conclusions; References Chapter 5: Modelling and Control of Infinite-Dimensional Mechanical Systems: A Port-Hamiltonian Approach Robotics / Congresses Robotics System theory |
subject_GND | (DE-588)1071861417 |
title | Multibody system dynamics, robotics and control |
title_auth | Multibody system dynamics, robotics and control |
title_exact_search | Multibody system dynamics, robotics and control |
title_full | Multibody system dynamics, robotics and control |
title_fullStr | Multibody system dynamics, robotics and control |
title_full_unstemmed | Multibody system dynamics, robotics and control |
title_short | Multibody system dynamics, robotics and control |
title_sort | multibody system dynamics robotics and control |
topic | Robotics / Congresses Robotics System theory |
topic_facet | Robotics / Congresses Robotics System theory Konferenzschrift |
url | https://doi.org/10.1007/978-3-7091-1289-2 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026073627&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026073627&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gattringerhubert multibodysystemdynamicsroboticsandcontrol |