Handbook of electrical power system dynamics: modeling, stability, and control
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley [u.a.]
2013
|
Schriftenreihe: | IEEE Press series on power engineering
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XXVII, 942 S. Ill., graph. Darst., Kt. |
ISBN: | 9781118497173 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV041057473 | ||
003 | DE-604 | ||
005 | 20160209 | ||
007 | t | ||
008 | 130529s2013 xxuabd| |||| 00||| eng d | ||
010 | |a 2012032673 | ||
020 | |a 9781118497173 |c cloth |9 978-1-118-49717-3 | ||
035 | |a (OCoLC)852655882 | ||
035 | |a (DE-599)BVBBV041057473 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-83 |a DE-703 |a DE-634 |a DE-29T |a DE-91 | ||
050 | 0 | |a TK1001 | |
082 | 0 | |a 621.31 | |
084 | |a ZN 8520 |0 (DE-625)157630: |2 rvk | ||
084 | |a ELT 903f |2 stub | ||
245 | 1 | 0 | |a Handbook of electrical power system dynamics |b modeling, stability, and control |c ed. by Mircea Eremia ... |
264 | 1 | |a Hoboken, NJ |b Wiley [u.a.] |c 2013 | |
300 | |a XXVII, 942 S. |b Ill., graph. Darst., Kt. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a IEEE Press series on power engineering | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Electric power system stability |x Mathematical models |v Handbooks, manuals, etc | |
650 | 4 | |a Electric power systems |x Control |v Handbooks, manuals, etc | |
650 | 4 | |a Electric machinery |x Dynamics |v Handbooks, manuals, etc | |
650 | 0 | 7 | |a Windkraftwerk |0 (DE-588)4128839-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stromausfall |0 (DE-588)4997345-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Netzstabilität |g Elektrische Energietechnik |0 (DE-588)4415875-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrische Energieverteilung |0 (DE-588)4123127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kraftwerk |0 (DE-588)4032728-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrizitätsversorgungsnetz |0 (DE-588)4121178-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektrizitätsversorgungsnetz |0 (DE-588)4121178-9 |D s |
689 | 0 | 1 | |a Netzstabilität |g Elektrische Energietechnik |0 (DE-588)4415875-0 |D s |
689 | 0 | 2 | |a Elektrische Energieverteilung |0 (DE-588)4123127-2 |D s |
689 | 0 | 3 | |a Kraftwerk |0 (DE-588)4032728-0 |D s |
689 | 0 | 4 | |a Windkraftwerk |0 (DE-588)4128839-7 |D s |
689 | 0 | 5 | |a Stromausfall |0 (DE-588)4997345-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Eremia, Mircea |d 1940- |0 (DE-588)1037444981 |4 edt | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026034679&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026034679&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-026034679 |
Datensatz im Suchindex
_version_ | 1804150419959578624 |
---|---|
adam_text | CONTENTS
Foreword
xxiii
Acknowledgments
xxv
Contributors
xxvii
1.
INTRODUCTION
1
Mircea Eremia and Mohammad Shahidehpour
PART I POWER SYSTEM MODELING AND CONTROL
7
2.
SYNCHRONOUS GENERATOR AND INDUCTION MOTOR
9
Mircea Eremia and
Constantin Bulac
2.1.
Theory and Modeling of Synchronous Generator
9
2.1.1.
Design and Operation Principles
9
2.1.2.
Electromechanical Model of Synchronous Generator:
Swing Equation
13
2.1.3.
Electromagnetic Model of Synchronous Generator
17
2.1.3.1.
Basic Equations
17
2.1.3.2.
Park Transformation
24
2.1.3.3.
Park Equations of Synchronous Generator
27
2.1.3.4.
Representation of Synchronous Generator Equations
in Per Unit
33
2.1.3.5.
Equivalent Circuits for the d- and
ç-Axes
38
2.1.3.6.
Steady-State Operation of the Synchronous Generator
41
2.1.3.7.
Synchronous Generator Behavior on Terminal Short Circuit
46
2.1.4.
Synchronous Generator Parameters
2.1.4.1.
Operational Parameters
2.1.4.2.
Standard Parameters
2.1.5.
Magnetic Saturation
2.1.5.1.
Open-Circuit and
Short-Circuit
Characteristics
2.1.5.2.
Considering the Saturation in Stability Studies
2.1.6.
Modeling in Dynamic State
2.1.6.1.
Simplified Electromagnetic Models
2.1.6.2.
Detailed Model in Dynamic State
2.1.7.
Reactive Capability Limits
55
55
59
66
67
69
73
73
82
90
v¡
CONTENTS
2.1.7.1.
Loading Capability Chart
90
2.1.7.2.
The V Curves
92
2.1.8.
Description and Modeling of the Excitation Systems
93
2.1.8.1.
Components and Performances of Excitation
Control System
93
2.1.8.2.
Types and Modeling of Excitation Systems
94
2.1.8.3.
Control and Protective Functions
104
2.1.8.4.
Example
112
2.2.
Theory and Modeling of the Induction Motor
114
2.2.1.
Design and Operation Issues
1
14
2.2.2.
General Equations of the Induction Motor
116
2.2.2.1.
Electrical Circuit Equations
116
2.2.2.2.
The d-q Transformation
120
2.2.2.3.
Basic Equations in the d-q Reference Frame
121
2.2.2.4.
Electric Power and Torque
123
2.2.3.
Steady-State Operation of the Induction Motor
123
2.2.4.
Electromechanical Model of Induction Motor
129
2.2.5.
Electromagnetic Model of Induction Motor
131
References
134
3.
MODELING THE MAIN COMPONENTS OF THE CLASSICAL
POWER PLANTS
137
Mohammad Shahidehpour, Mircea Eremia, and
Lucian
Toma
3.1.
Introduction
137
3.2.
Types of Turbines
138
3.2.1.
Steam Turbines
138
3.2.2.
Gas Turbines
139
3.2.3.
Hydraulic Turbines
140
3.3.
Thermal Power Plants
143
3.3.1.
Generalities
143
3.3.2.
Boiler and Steam Chest Models
145
3.3.3.
Steam System Configurations
148
3.3.4.
General Steam System Model
151
3.3.5.
Governing Systems for Steam Turbines
152
3.3.5.1.
Mechanical Hydraulic Control (MHC)
153
3.3.5.2.
Electrohydraulic Control (EHC)
155
3.3.5.3.
Digital Electrohydraulic Control (DEHC)
157
3.3.5.4.
General Model for Speed Governing Systems
157
3.4.
Combined-Cycle Power Plants
158
3.4.1.
Generalities
158
3.4.2.
Configurations of Combined-Cycle Power Plants
159
3.4.3.
Model Block Diagrams of Combined-Cycle Power Plant
160
CONTENTS
v¡¡
3.5.
Nuclear Power
Plants
167
3.6.
Hydraulic
Power
Plants
169
3.6.1.
Generalities
169
3.6.2.
Modeling of Hydro Prime Mover Systems and Controls
171
3.6.2.1.
General Block Diagram
171
3.6.2.2.
Modeling of Turbine Conduit Dynamics
171
3.6.3.
Hydro Turbine Governor Control Systems
174
3.6.3.1.
Set Point Controller
174
3.6.3.2.
The Actuator
176
References
177
4.
WIND POWER GENERATION
179
Mohammad Shahidehpour and Mircea Eremia
4.1.
Introduction
179
4.2.
Some Characteristics of Wind Power Generation
181
4.3.
State of the Art Technologies
184
4.3.1.
Overview of Generator Concepts
184
4.3.1.1.
General Description
185
4.3.1.2.
Squirrel Cage Induction Generator
188
4.3.1.3.
Dynamic Slip-Controlled Wound Rotor
Induction Generator
189
4.3.1.4.
Doubly Fed Induction Generator
190
4.3.1.5.
Wound Rotor Synchronous Generator
191
4.3.1.6.
Permanent Magnet Synchronous Generator
192
4.3.2.
Overview of Wind Turbines Concepts
195
4.3.2.1.
Fixed-Speed Wind Turbines
195
4.3.2.2.
Variable-Speed Wind Turbines
195
4.3.3.
Overview of Power Control Concepts
197
4.4.
Modeling the Wind Turbine Generators
200
4.4.1.
Model of a Constant-Speed Wind Turbine
200
4.4.2.
Modeling the Doubly Fed Induction Generator Wind
Turbine System
205
4.4.2.1.
DFIG Model
205
4.4.2.2.
Drive Train of DFIG
207
4.4.2.3.
Power Converter
209
4.4.2.4.
Control Strategy for the DFIG
209
4.4.2.5.
Aerodynamic Model and Pitch Angle Controller
215
4.4.2.6.
Operating Modes
217
4.4.3.
Full-Scale Converter Wind Turbine
218
4.4.3.1.
General Model
218
4.4.3.2.
Model of a Direct-Drive Wind Turbine with
Synchronous Generator
219
4.4.3.3.
Control of Full-Scale Converter Wind Turbine
221
viii CONTENTS
4.5.
Fault Ride-Through Capability
223
4.5.1.
Generalities
223
4.5.2.
Blade Pitch Angle Control for Fault Ride-Through
225
References
226
5.
SHORT-CIRCUIT CURRENTS CALCULATION
229
Nouredine Hadjsaid, Ion
Trą
tiu,
and
Lucian
Toma
5.1.
Introduction
229
5.1.1.
The Main Types of Short Circuits
230
5.1.2.
Consequences of Short Circuits
231
5.2.
Characteristics of Short-Circuit Currents
232
5.3.
Methods of Short-Circuit Currents Calculation
236
5.3.1.
Basic Assumptions
236
5.3.2.
Method of Equivalent Voltage Source
237
5.3.3.
Method of Symmetrical Components
239
5.3.3.1.
General Principles
239
5.3.3.2.
The Symmetrical Components of Unsymmetrical
Phasors
241
5.3.3.3.
Sequence Impedance of Network Components
247
5.3.3.4.
Unsymmetrical Fault Calculations
253
5.4.
Calculation of
Short-Circuit
Current Components
264
5.4.1.
Initial Symmetrical
Short-Circuit
Current
I ¿
264
5.4.1.1.
Three-Phase Short Circuit
264
5.4.1.2.
Phase-to-Phase Short Circuit
267
5.4.1.3.
Phase-to-Phase Short Circuit with Earth Connection
268
5.4.1.4.
Phase-to-Earth Short Circuit
268
5.4.2.
Peak
Short-Circuit
Current
ïp
269
5.4.2.1.
Three-Phase Short Circuit
269
5.4.2.2.
Phase-to-Phase Short Circuit
271
5.4.2.3.
Phase-to-Phase Short Circuit with Earth Connection
271
5.4.2.4.
Phase-to-Earth Short Circuit
271
5.4.3.
DC Component of the
Short-Circuit
Current
271
5.4.4.
Symmetrical Short-Circuit Breaking Current Jb
272
5.4.4.1.
Far-from-Generator Short Circuit
272
5.4.4.2.
Near-to-Generator Short Circuit
272
5.4.5.
Steady-State
Short-Circuit
Current /k
273
5.4.5.1.
Three-Phase Short Circuit of One Generator or
One Power Station Unit
273
5.4.5.2.
Three-Phase Short Circuit in Nonmeshed Networks
276
5.4.5.3.
Three-Phase Short Circuit in Meshed Networks
276
5.4.5.4.
Unbalanced Short Circuits
277
5.4.6.
Applications
277
References
289
CONTENTS
6. ACTIVE POWER
AND FREQUENCY
CONTROL
291
Les
Pereira
6.1.
Introduction
291
6.2.
Frequency Deviations in Practice
293
6.2.1.
Small Disturbances and Deviations
293
6.2.2.
Large Disturbances and Deviations
293
6.3.
Typical Standards and Policies for Active Power and Frequency
Control or Load Frequency Control
294
6.3.1.
UCTE Load Frequency Control
294
6.3.1.1.
Primary Control is by Governors
295
6.3.1.2.
Secondary Control by Automatic Generation
Controls (AGCs)
295
6.3.1.3.
Tertiary Control
296
6.3.1.4.
Self-Regulation of the Load
296
6.3.2.
NERC
(U.S.) Standards
296
6.3.3.
Other Countries Standards
297
6.4.
System Modeling, Inertia, Droop, Regulation, and Dynamic
Frequency Response
297
6.4.1.
Block Diagram of the System Dynamics and Load Damping
297
6.4.2.
Effect of Governor Droop on Regulation
298
6.4.3.
Increasing Load by Adjusting Prime Mover Power
298
6.4.4.
Parallel Operation of Several Generators
298
6.4.5.
Isolated Area Modeling and Response
301
6.5.
Governor Modeling
302
6.5.1.
Response of a Simple Governor Model with Droop
303
6.5.2.
Hydraulic Governor Modeling
304
6.5.2.1.
Hydraulic Turbines
304
6.5.2.2.
Hydraulic Governors
305
6.5.2.3.
Hydraulic Turbine Model
306
6.5.2.4. PID
Governor
306
6.5.3.
Performance of Hydrogovernors with Parameters Variation
307
6.5.3.1.
Isolated System Governor Simulations
307
6.5.3.2.
Interconnected System Governor Simulations
309
6.5.4.
Thermal Governor Modeling
311
6.5.4.1.
General Steam System Model
311
6.5.4.2.
Gas Turbine Model
312
6.5.5.
Development of a New Thermal Governor Model in the WECC
315
6.5.5.1.
The New Thermal Governor Model
315
6.5.5.2.
Analysis of Test Data: Thermal Versus Hydro Units
318
6.6.
AGC Principles and Modeling
328
6.6.1.
AGC in a Single-Area (Isolated) System
329
6.6.2.
AGC in a Two-Area System, Tie-Line Control, Frequency Bias
329
6.6.3.
AGC in Multiarea Systems
332
CONTENTS
6.7.
Other Topics of Interest Related to Load Frequency Control
336
6.7.1.
Spinning Reserves
336
6.7.2.
Underfrequency Load Shedding and Operation in Islanding
Conditions
336
References
338
7.
VOLTAGE AND REACTIVE POWER CONTROL
340
Sandro
Corsi
and Mircea Eremia
7.1.
Relationship Between Active and Reactive
Powers and Voltage
342
7.1.1.
Short Lines
342
7.1.2.
Taking into Account the Shunt Admittance
346
7.1.3.
Sensitivity Coefficients
346
7.2.
Equipments for Voltage and Reactive Power Control
347
7.2.1.
Reactive Power Compensation Devices
347
7.2.1.1.
Shunt Capacitors
347
7.2.1.2.
Shunt Reactors
348
7.2.2.
Voltage and Reactive Power Continuous Control Devices
349
7.2.2.1.
Synchronous Generators
349
7.2.2.2.
Synchronous Compensators
350
7.2.2.3.
Static VAr Controllers and FACTS
351
7.2.3.
On-Load Tap Changing Transformers
352
7.2.3.1.
Generalities
352
7.2.3.2.
Switching Technologies
355
7.2.3.3.
Determination of the Current Operating Tap
362
7.2.3.4.
Static Characteristic of the Transformer
363
7.2.3.5.
Various Applications of the OLTC Transformers for
Voltage and Reactive Power Control
366
7.2.4.
Regulating Transformers
371
7.2.4.1.
In-Phase Regulating Transformer (IPRT)
371
7.2.4.2.
Phase Shifting Transformers
372
7.3.
Grid Voltage and Reactive Power Control Methods
374
7.3.1.
General Considerations
374
7.3.2.
Voltage-Reactive Power Manual Control
377
7.3.2.1.
Manual Voltage Control by Reactive Power Flow
378
7.3.2.2.
Manual Voltage Control by Network Topology
Modification
378
7.3.3.
Voltage-Reactive Power Automatic Control
378
7.3.3.1.
Automatic Voltage Control of the Generator
Stator
Terminals
379
7.3.3.2.
Automatic Voltage Control by Generator Line Drop
Compensation
385
7.3.3.3.
Automatic High-Side Voltage Control at a Power Plant
391
CONTENTS xi
7.4.
Grid Hierarchical Voltage Regulation
399
7.4.1.
Structure of the Hierarchy
399
7.4.1.1.
Generalities
399
7.4.1.2.
Basic SVR and
TVR
Concepts
401
7.4.1.3.
Primary Voltage Regulation
402
7.4.1.4.
Secondary Voltage Regulation: Architecture and Modeling
405
7.4.1.5.
Tertiary Voltage Regulation
417
7.4.2.
SVR Control Areas
418
7.4.2.1.
Procedure to Select the Pilot Nodes and to Define
the Control Areas
418
7.4.2.2.
Procedure to Select the Control Generators
420
7.4.3.
Power Flow Computation in the Presence of the Secondary
Voltage Regulation
422
7.5.
Implementation Study of the Secondary Voltage Regulation in Romania
423
7.5.1.
Characteristics of the Study System
423
7.5.2.
SVR Areas Selection
423
7.6.
Examples of Hierarchical Voltage Control in the World
429
7.6.1.
The French Power System Hierarchical Voltage Control
429
7.6.1.1.
General Overview
429
7.6.1.2.
Original Secondary Voltage Regulation
430
7.6.1.3.
Coordinated Secondary Voltage Regulation
432
7.6.1.4.
Performances and Results of Simulations
434
7.6.1.5.
Conclusion on the French Hierarchical Voltage
Control System
435
7.6.2.
The Italian Hierarchical Voltage Control System
435
7.6.2.1.
General Overview
435
7.6.2.2.
Improvements in the Power System Operation
438
7.6.2.3.
Conclusions on the Italian Hierarchical Voltage
Control System
442
7.6.3.
The Brazilian Hierarchical Voltage Control System
442
7.6.3.1.
General Overview
442
7.6.3.2.
Results of the Study Simulations
443
7.6.3.3.
Conclusions on the Brazilian Voltage Control System
447
References
447
PART II POWER SYSTEM STABILITY AND PROTECTION
451
8.
BACKGROUND OF POWER SYSTEM STABILITY
453
S.S.
(Mani) Venkata,
Mircea Eremia, and
Lucian
Toma
8.1.
Introduction
453
8.2.
Classification of Power Systems Stability
453
8.2.1.
Rotor Angle Stability
454
x¡¡
CONTENTS
8.2.1.1.
Small-Disturbance (or Small-Signal) Rotor Angle Stability
460
8.2.1.2.
Large-Disturbance Rotor Angle Stability or Transient
Stability
461
8.2.2.
Voltage Stability
462
8.2.3.
Frequency Stability
467
8.3.
Parallelism Between Voltage Stability and Angular Stability
469
8.4.
Importance of Security for Power System Stability
469
8.4.1.
Power System States
470
8.4.2.
Power Flow Security Limits
472
8.4.3.
Services to Meet Power System Security Constraints
473
8.4.4.
Dynamic Security Assessment
474
References
475
9.
SMALL-DISTURBANCE ANGLE STABILITY AND ELECTROMECHANICAL
OSCILLATION DAMPING
477
Roberto Marconato and Alberto Berizzi
9.1.
Introduction
477
9.2.
The Dynamic Matrix
478
9.2.1.
Linearized Equations
478
9.2.2.
Building the Dynamic Matrix
481
9.3.
A General Simplified Approach
482
9.3.1.
Inertia and Synchronizing Power Coefficients
483
9.3.2.
Electromechanical Oscillations
486
9.3.2.1.
Oscillation Modes
486
9.3.2.2.
Oscillation Amplitudes and Participation Factors
489
9.3.3.
Numerical Examples
493
9.3.3.1.
Application
1:
Two-Area Test System
494
9.3.3.2.
Application
2:
Three-Area Test System
497
9.4.
Major Factors Affecting the Damping of Electromechanical Oscillations
501
9.4.1.
Introduction
501
9.4.2.
Single Machine-Infinite Bus System: A Simplified Approach
503
9.4.3.
Single Machine-Infinite Bus System: A More Accurate Approach
507
9.4.3.1.
Introduction
507
9.4.3.2.
Contribution to Damping Due to Generator Structure
512
9.4.3.3.
Contribution of the Primary Voltage Control
514
9.4.3.4.
Effect of Primary Frequency Control
537
9.4.3.5.
Outline of Other Contributions
544
9.4.4.
Summary of the Major Factors Affecting the Damping of
Electromechanical Oscillations
545
9.5.
Damping Improvement
546
9.5.1.
Introduction
546
9.5.2.
Modal Synthesis Based on the Theory of Small Shift Poles
550
CONTENTS
x¡¡¡
9.5.3.
PSSs on Excitation Control
553
9.5.3.1.
Base Case and Theory
553
9.5.3.2.
Synthesis of PSSs on Excitation Control: General Case
556
9.5.4.
Limitation on
PSS
Gains
561
9.6.
Typical Cases of Interarea Or Low-Frequency
Electromechanical Oscillations
564
References
568
10.
TRANSIENT STABILITY
570
Nikolai Voropai and
Constantin Bulac
10.1.
General Aspects
570
10.2.
Direct Methods for Transient Stability Assessment
572
10.2.1.
Equal Area Criterion
572
10.2.1.1.
Fundamentals of Equal Area Criterion
572
10.2.1.2.
Calculation of the Fault Clearing Time
575
10.2.1.3.
Two Finite Power Synchronous Generators
579
10.2.2.
Extended Equal Area Criterion-EEAC
580
10.2.3.
The
SIME
(Single
-
Machine Equivalent) Method
582
10.2.3.1.
Method Formulation
583
10.2.3.2.
Criteria and Degree of Instability
585
10.2.3.3.
Criteria and Corresponding Stability Reserve
585
10.2.3.4.
Identification of the
ОМІВ
Equivalent
586
10.2.4.
Direct Methods Based on Lyapunov s Theory
587
10.2.4.1.
Lyapunov s Method
587
10.2.4.2.
Designing the Lyapunov Function
590
10.2.4.3.
Determination of Equilibrium
594
10.2.4.4.
Extension of the Direct Lyapunov s Method
596
10.2.4.5.
New Approaches
601
10.3.
Integration Methods for Transient Stability Assessment
603
10.3.1.
General Considerations
603
10.3.2.
Runge-Kutta Methods
608
10.3.3.
Implicit Trapezoidal Rule
609
10.3.4.
Mixed Adams-BDF Method
611
10.4.
Dynamic Equivalents
614
10.4.1.
Generalities
614
10.4.2.
Simplification of Mathematical Description of a System
617
10.4.2.1.
The Disturbance Impact Index
617
10.4.2.2.
The Study of the Disturbance Impact Index
617
10.4.3.
Estimating the System Element Significance
621
10.4.3.1.
Index of the System Structural Connectivity
621
10.4.3.2.
Significance of a System Element
622
xiv
CONTENTS
10.4.4.
Coherency Estimation
623
10.4.4.1.
Equation of the Mutual Motion of a Pair of Machines
623
10.4.4.2.
Coherency Indices
625
10.4.4.3.
Clustering of Coherency Indices
628
10.4.5.
Equivalencing Criteria
631
10.4.6.
Center of Inertia. Parameters of the Equivalent
634
10.5.
Transient Stability Assessment of Large Electric Power
Systems
638
10.5.1.
Characteristics of Large Electric Power System
638
10.5.2.
Initial Conditions
639
10.5.3.
Standard Conditions for Transient Stability Studies
639
10.5.3.1.
Studied Conditions and Disturbances
639
10.5.3.2.
Stability Margins
641
10.5.3.3.
System Stability Requirements
642
10.5.4.
Reducing the Studied Conditions by Structural Analysis
643
10.5.5.
Using the Simplified Models and Direct Methods
644
10.6.
Application
645
References
651
11.
VOLTAGE STABILITY
657
Mircea Eretnia and
Constantin Bulac
11.1.
Introduction
657
11.2.
System Characteristics and Load Modeling
658
11.2.1.
System Characteristics
658
11.2.2.
Load Modeling
660
11.2.2.1.
Load Characteristics
660
11.2.2.2.
Static Models
662
11.2.2.3.
Dynamic Models
664
11.3.
Static Aspects of Voltage Stability
667
11.3.1.
Existence of Steady-State Solutions
667
11.3.2.
Operating Points and Zones
670
11.4.
Voltage Instability Mechanisms: Interaction Between Electrical
Network, Loads, and Control Devices
674
11.4.1.
Interaction between Electrical Network and Load
674
11.4.2.
Influence of the On-Load Tap Changer
676
11.4.2.1.
Modeling the On-Load Tap Changing Dynamics
676
11.4.2.2.
The Effect of Automatic Tap Changing on the Possible
Operating Points
678
11.4.2.3.
Influence of On-Load Tap Changing on the Voltage
Stability
679
11.4.3.
Effect of the Generated Reactive Power Limitation
683
1
1.4.4.
The Minimum Voltage Criteria
686
CONTENTS xv
11.5.
Voltage Stability Assessment Methods
688
11.5.1.
Overview of Voltage Collapse Criteria
688
11.5.2.
Sensitivities Analysis Method: Local Indices
695
11.5.3.
Loading Margin as Global Index
698
11.5.4.
Some Aspects of the Bifurcations Theory
702
11.5.4.1.
Generalities
702
11.5.4.2. Hopf
Bifurcation
704
11.5.4.3.
Saddle-node Bifurcation
705
11.5.4.4.
Singularity Induced Bifurcation
706
11.5.4.5.
Global Bifurcations
707
11.5.5.
The Smallest Singular Value Technique.
VSI
Global
Index
708
11.5.6.
Modal Analysis of the Reduced Jacobian Matrix
711
11.5.6.1.
The V-Q Variation Modes of the Power System
712
11.5.6.2.
Definition of Participation Factors in Voltage
Stability Analysis
714
11.6.
Voltage Instability Countermeasures
716
11.6.1.
Some Confusions
716
11.6.2.
Load Shedding: An Emergency Measure
717
11.6.3.
Shunt Capacitor Switching
719
11.6.4.
Extending the Voltage Stability Limit by FACTS Devices
719
11.6.5.
Countermeasures Against the Destabilizing Effect of the
Load Tap Changer
724
11.7.
Application
724
References
733
12.
POWER SYSTEM PROTECTION
737
Klaus-Peter Brand and Ivan
De Mesmaeker
12.1.
Introduction
737
12.1.1.
Motivation
737
12.1.2.
The Task of Protection
738
12.1.3.
Basic Protection Properties and Resulting
Requirements
739
12.1.4.
From System Supervision to Circuit Breaker Trip
739
12.1.5.
Main Operative Requirements
740
12.1.5.1.
Selectivity
740
12.1.5.2.
Reliability
740
12.1.5.3.
Speed and Performance
741
12.1.5.4.
Adaptation
741
12.1.5.5.
Adaptive Protection
741
12.1.5.6.
Backup Protection
741
xvj
CONTENTS
12.1.5.7. General
Remarks About Features Like Performance,
Reliability, and Availability
742
12.1.6.
Advantages of State-of-the-Art Protection
742
12.2.
Summary of IEC
61850 744
12.3.
The Protection Chain in Details
746
12.3.1.
Copper Wires vs. Serial Links
746
12.3.2.
Supervision
746
12.3.3.
Values Measured for Protection
748
12.3.3.1.
Nonelectrical Values
748
12.3.3.2.
Electrical Values
748
12.3.4.
Data Acquisition from Sensors
748
12.3.4.1.
Sensors
748
12.3.4.2.
A/D Conversion and Merging Unit
750
12.3.4.3.
Time Synchronization
750
12.3.5.
Protection Data Processing
751
12.3.5.1.
General
751
12.3.5.2.
Trip Decision and Related Information
751
12.3.5.3.
Other Data Handling Features
751
12.3.6.
Data Sending to the Actuators
751
12.3.7.
Process Interface
752
12.3.8.
Circuit Breaker
752
12.3.9.
Power Supply
753
12.4.
Transmission and Distribution Power System Structures
753
12.5.
Properties of the Three-Phase Systems Relevant
for Protection
755
12.5.1.
Symmetries
755
12.5.2.
Unbalance
756
12.5.3.
Symmetrical Components
758
12.6.
Protection Functions Sorted According to the Objects Protected
759
12.6.1.
Protection Based on Limits of Locally Measured Values
759
12.6.1.1.
Overcurrent and Time Overcurrent Protection
760
12.6.1.2.
Overload Protection
760
12.6.1.3.
Frequency Protection
761
12.6.1.4.
Voltage Protection
761
12.6.1.5.
Limit Supervision and Protection
761
12.6.1.6.
Protection with Improvement of Selection by
Time Delays
762
12.6.1.7.
Protection with Improvement of Selection by
Communication
763
12.6.2.
Protection with Fault Direction Detection
764
12.6.2.1.
Directional Protection
764
12.6.2.2.
Improvement of Directional Protection by Communication
765
CONTENTS xvii
12.6.3.
Impedance Protection
766
12.6.3.1.
Distance Protection
766
12.6.3.2.
Special Impedance-Based Functions
768
12.6.4.
Current Differential Functions
768
12.6.4.1.
Differential Protection
768
12.6.4.2.
Application Issues for Busbar Protection
770
12.6.4.3.
Application Issues for Line Differential Protection
771
12.6.4.4.
Comparative Protection as Simplified Differential
Protection
771
12.6.5.
Protection-Related Functions
772
12.6.5.1.
Breaker Failure Protection
772
12.6.5.2.
Autoreclosing
772
12.6.5.3.
Synchrocheck
773
12.7.
From Single Protection Functions to System Protection
773
12.7.1.
Single Function and Multifunctional Relays
773
12.7.2.
Adaptive Protection
774
12.7.3.
Distributed Protection
774
12.7.3.1.
Differential Object Protection Functions
774
12.7.3.2.
Directional Object Protection Functions
775
12.7.4.
Wide Area Protection
775
12.7.5.
General Guide
776
12.7.5.1.
General Recommendations for Protection Application
776
12.7.6.
Security and Dependability
779
12.7.7.
Summary
780
12.8.
Conclusions
780
Annex
12.1.
Identification of Protection Functions
780
A.
12.1.
General Remarks
780
A.
12.1.1.
IEEE Device Numbers
780
A.
12.1.2.
IEC Designation
781
A.
12.1.3.
Logical Nodes Names
781
A.
12.2.
Identification List
781
References
785
PARTIU
GRID BLACKOUTS AND RESTORA
TION
PROCESS
787
13.
MAJOR GRID BLACKOUTS: ANALYSIS, CLASSIFICATION,
AND PREVENTION
789
Yvon Besanger, Mircea Eremia, and Nikolai Voropai
13.1.
Introduction
789
13.2.
Description of Some Previous Blackouts
792
13.2.1.
August
14, 2003
Northeast United States and Canada Blackout
793
13.2.1.1.
Precondition
793
xviij
CONTENTS
13.2.1.2.
Initiating Events
794
13.2.1.3.
Cascading Events
795
13.2.1.4.
Final State
801
13.2.1.5.
What Stopped the Cascade Spreading?
801
13.2.1.6.
Causes of Blackout
802
13.2.1.7.
Recommendations to Prevent Blackouts
804
13.2.2.
September
28, 2003
Italy Blackout
805
13.2.2.1.
Precondition
805
13.2.2.2.
Initiating Events
806
13.2.2.3.
Cascading Events
806
13.2.2.4.
Final State
810
13.2.2.5.
Restoration
811
13.2.2.6.
Root Causes of the Blackout
811
13.2.2.7.
Recommendations to Prevent Blackouts
811
13.2.3.
September
23, 2003
Eastern Denmark and Southern
Sweden Blackout
812
13.2.3.1.
Precondition
812
13.2.3.2.
Initiating Events
812
13.2.3.3.
Cascading Events
812
13.2.3.4.
Final State
812
13.2.4.
January
12, 2003
Blackout in Croatia
812
13.2.4.1.
Precondition
812
13.2.4.2.
Initiating Events
813
13.2.4.3.
Cascading Events
813
13.2.4.4.
Final State
813
13.2.5.
May
25, 2005
Blackout in Moscow
814
13.2.5.1.
Precondition
814
13.2.5.2.
Initiating Events
814
13.2.5.3.
Cascading Events
816
13.2.5.4.
Final State
816
13.2.6.
July
12, 2004
Greece Blackout
816
13.2.6.1.
Precondition
816
13.2.6.2.
Initiating Events
816
13.2.6.3.
Cascading Events
817
13.2.6.4.
Final State
817
13.2.7.
July
2, 1996
Northwest U.S. Blackout
817
13.2.7.1.
Precondition
817
13.2.7.2.
Initiating Events
817
13.2.7.3.
Cascading Events
817
13.2.7.4.
Final State
818
13.2.8.
August
10, 1996
Northwest U.S. Blackout
818
13.2.8.1.
Precondition
818
CONTENTS xix
13.2.8.2.
Initiating Events
818
13.2.8.3.
Cascading
Events 818
13.2.8.4. Final State 818
13.2.9.
December
19, 1978 National
Blackout in
France 819
13.2.9.1.
Precondition
819
13.2.9.2.
Initiating
Events 819
13.2.9.3.
Cascading
Events 819
13.2.9.4. Final State 820
13.2.9.5.
Restoration
820
13.2.9.6.
Causes of Blackout
820
13.2.10.
January
12, 1987
Western France Blackout
820
13.2.10.1.
Precondition
820
13.2.10.2.
Initiating Events
820
13.2.10.3.
Cascading Events
820
13.2.10.4.
Emergency Actions
821
13.2.10.5.
Causes of Blackout
821
13.2.11.
March
13, 1989
Hydro-Quebec System Blackout Response
to Geomagnetic Disturbance
822
13.2.11.1.
Precondition
822
13.2.11.2.
Initiating and Cascading Events
823
13.2.11.3.
Causes of the SVC Tripping
823
13.2.11.4.
Equipment Damage
825
13.2.11.5.
Lessons Learned
825
13.2.12.
January
17, 1995
Japan Blackout After Hanshin Earthquake
826
13.2.12.1.
Precondition
826
13.2.12.2.
Supply and Demand
826
13.2.12.3.
Damage to Electric Power Facilities
827
13.2.12.4.
Restoration of Electricity Supply
828
13.2.13.
European Incident of November
4, 2006 830
13.2.13.1.
Precondition
830
13.2.13.2.
Initiating Events
830
13.2.13.3.
Cascading Events
832
13.2.13.4.
Final State
833
13.2.13.5.
Resynchronization
835
13.2.14.
Some Lessons Learned
835
13.3.
Analysis of Blackouts
835
13.3.1.
Classification of Blackouts
836
13.3.1.1.
Precondition
836
13.3.1.2.
Initiating Events
837
13.3.1.3.
Cascading Events
837
13.3.2.
Blackouts: Types of Incidents
840
13.3.3.
Mechanisms of Blackouts
841
CONTENTS
xx
13.3.3.1.
Voltage Collapse
842
13.3.3.2.
Frequency Collapse
842
13.3.3.3.
Cascading Overload
843
13.3.3.4.
System Separation
843
13.3.3.5.
Loss of Synchronism
843
13.3.3.6.
Generalization
844
13.4.
Economical and Social Effects
847
13.5.
Recommendations for Preventing Blackouts
849
13.6.
On Some Defense and Restoration Actions
850
13.6.1.
Defense Actions
851
13.6.2.
Restoration Actions
854
13.7.
Survivability/vulnerability of Electric Power Systems
856
13.7.1.
Introduction
856
13.7.2.
Conception
857
13.7.3.
Technology of Study
858
13.7.4.
Concluding Remarks
859
13.8.
Conclusions
860
Acknowledgments
860
References
860
14.
RESTORATION PROCESSES AFTER BLACKOUTS
864
Alberto Borghetti, Carlo Alberto Nucci, and Mario Paolone
14.1.
Introduction
864
14.2.
Overview of The Restoration Process
865
14.2.1.
System Restoration Stages, Duration, Tasks, and
Typical Problems
866
14.2.2.
New Requirements
868
14.3.
Black-Start-Up Capabilities of Thermal Power Plant: Modeling
and Computer Simulations
869
14.3.1.
Black-Start-up of a Steam Group Repowered by a Gas Turbine
869
14.3.1.1.
Black-Start-up Capability of a Single Steam Group
870
14.3.1.2.
Black-Start-Up Capability of a Steam Group Repowered
by a Gas Turbine
872
14.3.1.3.
Control System Modifications to Improve Black-Start-Up
Capabilities
874
14.3.2.
Black-Start-Up of a Combined-Cycle Power Plant
877
14.3.2.1.
Analysis of the Energization Maneuvers
878
14.3.2.2.
Analysis of the Islanding Maneuvers
879
14.3.2.3.
Description of Some Islanding Tests and Obtained
Experimental Results
886
14.4.
Description of Computer Simulators
888
CONTENTS xxi
14.4.1. Simulator
of a Steam Group Repowered with a Gas Turbine
888
14.4.1.1.
Gas Turbine Model and Its Validation
889
14.4.1.2.
Steam Section Modeling and Its Validation
889
14.4.2.
Simulator of a Combined-Cycle Power Plant
892
14.5.
Concluding Remarks
896
References
896
15.
COMPUTER SIMULATION OF SCALE-BRIDGING TRANSIENTS
IN POWER SYSTEMS
900
Kai
Strunz and Feng
Gao
15.1.
Bridging of Instantaneous and Phasor Signals
901
15.2.
Network Modeling
903
15.2.1.
Companion Model for Network Branches
903
15.2.2.
Direct Construction of Nodal Admittance Matrix
906
15.3.
Modeling of Power System Components
909
15.3.1.
Multiphase Lumped Elements
909
15.3.2.
Transformer
911
15.3.3.
Transmission Line
912
15.3.3.1.
Single-Phase Line Model
912
15.3.3.2.
Multiphase Line Model
916
15.3.4.
Synchronous Machine in dqO Domain
918
15.3.4.1.
Electromagnetic and Mechanical Machine Equations
918
15.3.4.2.
Calculation of Real Part of
Stator
Current
920
15.3.4.3.
Calculation of Imaginary Part of
Stator
Current
920
15.3.4.4.
Calculation of Rotor Speed and Angle
922
15.3.4.5.
Integration with AC Network
922
15.3.4.6.
Initialization
923
15.4.
Application: Simulation of Blackout
923
References
926
Index
929
This handbook offers a comprehensive and up-to-date treatment of power system
dynamics. Addressing the full range of topics, from the fundamentals to the latest
technologies in modeling, stability, and control, Handbook of Electrical Power System
Dynamics provides engineers with hands-on guidance for understanding the
phenomena leading to blackouts so they can design the most appropriate solutions for a
cost-effective and reliable operation.
Focusing on system dynamics, the book details analytical methods of power system
behavior along with models for the main components of power plants and control
systems used in dispatch centers. Special emphasis is given to evaluation methods for
rotor angle stability and voltage stability as well as the control mechanism for frequency
and voltage. With contributions from international experts in both
academia
and
industry, the book features:
Critical insight into new trends in power system operation and control
Numerous examples and graphics, including more than
600
figures and
1,200
equations
In-depth coverage of wind generation, an alternative energy system
An easily accessible presentation for readers with varied experience, from students
to practicing engineers
An invaluable resource for power system engineers and smart grid analysts, this is also
an excellent reference for system operators, utility workers, manufacturers, consultants,
vendors, and researchers.
is Full Professor in the Electrical Power Systems Department
at the University
Politehnica
of Bucharest. He has authored or coauthored more
than
150
journal and conference papers as well as ten books in the field of electric
power systems. Professor Eremia has extensive experience in power system analysis
and engineering education.
is Bodine Chair Professor in the Electrical and
Computer Engineering Department and Director of the Robert W. Galvin Center for
Electricity Innovation at Illinois Institute of Technology in Chicago. He is Editor-in-Chief
of IEEE Transactions on Smart Grid and an editorial board member of IEEE Power and
Energy Magazine.
CoVl T
Di şl^lt: ft>htl
Will*)·
&
Sfitti,
I
Ih .
Omot Phtrtogrjph:
©
dtrhis Suffer Rnyttlty-hnv/Aidnry
Also available
•sane-book
Subscribe to our free Eiecirical Engineering «Newsletter at
ISBN 47fi-l-lia-44717-3
90000
IEEE PRESS
18497173
|
any_adam_object | 1 |
author2 | Eremia, Mircea 1940- |
author2_role | edt |
author2_variant | m e me |
author_GND | (DE-588)1037444981 |
author_facet | Eremia, Mircea 1940- |
building | Verbundindex |
bvnumber | BV041057473 |
callnumber-first | T - Technology |
callnumber-label | TK1001 |
callnumber-raw | TK1001 |
callnumber-search | TK1001 |
callnumber-sort | TK 41001 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ZN 8520 |
classification_tum | ELT 903f |
ctrlnum | (OCoLC)852655882 (DE-599)BVBBV041057473 |
dewey-full | 621.31 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.31 |
dewey-search | 621.31 |
dewey-sort | 3621.31 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Energietechnik, Energiewirtschaft Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02726nam a2200565zc 4500</leader><controlfield tag="001">BV041057473</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160209 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130529s2013 xxuabd| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2012032673</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118497173</subfield><subfield code="c">cloth</subfield><subfield code="9">978-1-118-49717-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852655882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041057473</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.31</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8520</subfield><subfield code="0">(DE-625)157630:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 903f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of electrical power system dynamics</subfield><subfield code="b">modeling, stability, and control</subfield><subfield code="c">ed. by Mircea Eremia ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley [u.a.]</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 942 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IEEE Press series on power engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric power system stability</subfield><subfield code="x">Mathematical models</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric power systems</subfield><subfield code="x">Control</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric machinery</subfield><subfield code="x">Dynamics</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Windkraftwerk</subfield><subfield code="0">(DE-588)4128839-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stromausfall</subfield><subfield code="0">(DE-588)4997345-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Netzstabilität</subfield><subfield code="g">Elektrische Energietechnik</subfield><subfield code="0">(DE-588)4415875-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrische Energieverteilung</subfield><subfield code="0">(DE-588)4123127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kraftwerk</subfield><subfield code="0">(DE-588)4032728-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrizitätsversorgungsnetz</subfield><subfield code="0">(DE-588)4121178-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrizitätsversorgungsnetz</subfield><subfield code="0">(DE-588)4121178-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Netzstabilität</subfield><subfield code="g">Elektrische Energietechnik</subfield><subfield code="0">(DE-588)4415875-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Elektrische Energieverteilung</subfield><subfield code="0">(DE-588)4123127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Kraftwerk</subfield><subfield code="0">(DE-588)4032728-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Windkraftwerk</subfield><subfield code="0">(DE-588)4128839-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Stromausfall</subfield><subfield code="0">(DE-588)4997345-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eremia, Mircea</subfield><subfield code="d">1940-</subfield><subfield code="0">(DE-588)1037444981</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026034679&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026034679&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026034679</subfield></datafield></record></collection> |
id | DE-604.BV041057473 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:38:38Z |
institution | BVB |
isbn | 9781118497173 |
language | English |
lccn | 2012032673 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026034679 |
oclc_num | 852655882 |
open_access_boolean | |
owner | DE-83 DE-703 DE-634 DE-29T DE-91 DE-BY-TUM |
owner_facet | DE-83 DE-703 DE-634 DE-29T DE-91 DE-BY-TUM |
physical | XXVII, 942 S. Ill., graph. Darst., Kt. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Wiley [u.a.] |
record_format | marc |
series2 | IEEE Press series on power engineering |
spelling | Handbook of electrical power system dynamics modeling, stability, and control ed. by Mircea Eremia ... Hoboken, NJ Wiley [u.a.] 2013 XXVII, 942 S. Ill., graph. Darst., Kt. txt rdacontent n rdamedia nc rdacarrier IEEE Press series on power engineering Mathematisches Modell Electric power system stability Mathematical models Handbooks, manuals, etc Electric power systems Control Handbooks, manuals, etc Electric machinery Dynamics Handbooks, manuals, etc Windkraftwerk (DE-588)4128839-7 gnd rswk-swf Stromausfall (DE-588)4997345-9 gnd rswk-swf Netzstabilität Elektrische Energietechnik (DE-588)4415875-0 gnd rswk-swf Elektrische Energieverteilung (DE-588)4123127-2 gnd rswk-swf Kraftwerk (DE-588)4032728-0 gnd rswk-swf Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd rswk-swf Elektrizitätsversorgungsnetz (DE-588)4121178-9 s Netzstabilität Elektrische Energietechnik (DE-588)4415875-0 s Elektrische Energieverteilung (DE-588)4123127-2 s Kraftwerk (DE-588)4032728-0 s Windkraftwerk (DE-588)4128839-7 s Stromausfall (DE-588)4997345-9 s DE-604 Eremia, Mircea 1940- (DE-588)1037444981 edt Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026034679&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026034679&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Handbook of electrical power system dynamics modeling, stability, and control Mathematisches Modell Electric power system stability Mathematical models Handbooks, manuals, etc Electric power systems Control Handbooks, manuals, etc Electric machinery Dynamics Handbooks, manuals, etc Windkraftwerk (DE-588)4128839-7 gnd Stromausfall (DE-588)4997345-9 gnd Netzstabilität Elektrische Energietechnik (DE-588)4415875-0 gnd Elektrische Energieverteilung (DE-588)4123127-2 gnd Kraftwerk (DE-588)4032728-0 gnd Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd |
subject_GND | (DE-588)4128839-7 (DE-588)4997345-9 (DE-588)4415875-0 (DE-588)4123127-2 (DE-588)4032728-0 (DE-588)4121178-9 |
title | Handbook of electrical power system dynamics modeling, stability, and control |
title_auth | Handbook of electrical power system dynamics modeling, stability, and control |
title_exact_search | Handbook of electrical power system dynamics modeling, stability, and control |
title_full | Handbook of electrical power system dynamics modeling, stability, and control ed. by Mircea Eremia ... |
title_fullStr | Handbook of electrical power system dynamics modeling, stability, and control ed. by Mircea Eremia ... |
title_full_unstemmed | Handbook of electrical power system dynamics modeling, stability, and control ed. by Mircea Eremia ... |
title_short | Handbook of electrical power system dynamics |
title_sort | handbook of electrical power system dynamics modeling stability and control |
title_sub | modeling, stability, and control |
topic | Mathematisches Modell Electric power system stability Mathematical models Handbooks, manuals, etc Electric power systems Control Handbooks, manuals, etc Electric machinery Dynamics Handbooks, manuals, etc Windkraftwerk (DE-588)4128839-7 gnd Stromausfall (DE-588)4997345-9 gnd Netzstabilität Elektrische Energietechnik (DE-588)4415875-0 gnd Elektrische Energieverteilung (DE-588)4123127-2 gnd Kraftwerk (DE-588)4032728-0 gnd Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd |
topic_facet | Mathematisches Modell Electric power system stability Mathematical models Handbooks, manuals, etc Electric power systems Control Handbooks, manuals, etc Electric machinery Dynamics Handbooks, manuals, etc Windkraftwerk Stromausfall Netzstabilität Elektrische Energietechnik Elektrische Energieverteilung Kraftwerk Elektrizitätsversorgungsnetz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026034679&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026034679&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT eremiamircea handbookofelectricalpowersystemdynamicsmodelingstabilityandcontrol |