An introduction to phase-integral methods:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Mineola, NY
Dover
2013
|
Ausgabe: | This Dover ed., 1. publ. in 2013, is an unabridged republ. of the work originally publ. in 1962... |
Schriftenreihe: | Dover books on mathematics
|
Schlagworte: | |
Beschreibung: | Includes bibliographical references and index -- "The phase-integral method in mathematics, also known as the Wentzel-Kramers-Brillouin (WKB) method, is the focus of this introductory treatment. Author John Heading successfully steers a course between simplistic and rigorous approaches to provide a concise overview for advanced undergraduates and graduate students. Topics include the Stokes phenomenon, one and two transition points, and applications. 1962 edition"-- Provided by publisher. |
Beschreibung: | 160 S. graph. Darst. |
ISBN: | 9780486497426 0486497429 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041040952 | ||
003 | DE-604 | ||
005 | 20130701 | ||
007 | t | ||
008 | 130523s2013 xxud||| |||| 00||| eng d | ||
010 | |a 2012038911 | ||
020 | |a 9780486497426 |c pbk. |9 978-0-486-49742-6 | ||
020 | |a 0486497429 |c pbk. |9 0-486-49742-9 | ||
035 | |a (OCoLC)854714011 | ||
035 | |a (DE-599)BVBBV041040952 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-19 | ||
050 | 0 | |a QA372 | |
082 | 0 | |a 515/.354 | |
100 | 1 | |a Heading, John |e Verfasser |4 aut | |
245 | 1 | 0 | |a An introduction to phase-integral methods |c John Heading |
250 | |a This Dover ed., 1. publ. in 2013, is an unabridged republ. of the work originally publ. in 1962... | ||
264 | 1 | |a Mineola, NY |b Dover |c 2013 | |
300 | |a 160 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Dover books on mathematics | |
500 | |a Includes bibliographical references and index | ||
500 | |a -- "The phase-integral method in mathematics, also known as the Wentzel-Kramers-Brillouin (WKB) method, is the focus of this introductory treatment. Author John Heading successfully steers a course between simplistic and rigorous approaches to provide a concise overview for advanced undergraduates and graduate students. Topics include the Stokes phenomenon, one and two transition points, and applications. 1962 edition"-- Provided by publisher. | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Differential equations, Linear |x Numerical solutions | |
650 | 4 | |a Integrals | |
650 | 4 | |a Mathematical physics | |
650 | 7 | |a MATHEMATICS / Differential Equations |2 bisacsh | |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-026018362 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804150401811873792 |
---|---|
any_adam_object | |
author | Heading, John |
author_facet | Heading, John |
author_role | aut |
author_sort | Heading, John |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV041040952 |
callnumber-first | Q - Science |
callnumber-label | QA372 |
callnumber-raw | QA372 |
callnumber-search | QA372 |
callnumber-sort | QA 3372 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)854714011 (DE-599)BVBBV041040952 |
dewey-full | 515/.354 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.354 |
dewey-search | 515/.354 |
dewey-sort | 3515 3354 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | This Dover ed., 1. publ. in 2013, is an unabridged republ. of the work originally publ. in 1962... |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02171nam a2200493 c 4500</leader><controlfield tag="001">BV041040952</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130701 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130523s2013 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2012038911</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780486497426</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-0-486-49742-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0486497429</subfield><subfield code="c">pbk.</subfield><subfield code="9">0-486-49742-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)854714011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041040952</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA372</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.354</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heading, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to phase-integral methods</subfield><subfield code="c">John Heading</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">This Dover ed., 1. publ. in 2013, is an unabridged republ. of the work originally publ. in 1962...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Mineola, NY</subfield><subfield code="b">Dover</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">160 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Dover books on mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">-- "The phase-integral method in mathematics, also known as the Wentzel-Kramers-Brillouin (WKB) method, is the focus of this introductory treatment. Author John Heading successfully steers a course between simplistic and rigorous approaches to provide a concise overview for advanced undergraduates and graduate students. Topics include the Stokes phenomenon, one and two transition points, and applications. 1962 edition"-- Provided by publisher.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Linear</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026018362</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV041040952 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:38:21Z |
institution | BVB |
isbn | 9780486497426 0486497429 |
language | English |
lccn | 2012038911 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026018362 |
oclc_num | 854714011 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | 160 S. graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Dover |
record_format | marc |
series2 | Dover books on mathematics |
spelling | Heading, John Verfasser aut An introduction to phase-integral methods John Heading This Dover ed., 1. publ. in 2013, is an unabridged republ. of the work originally publ. in 1962... Mineola, NY Dover 2013 160 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Dover books on mathematics Includes bibliographical references and index -- "The phase-integral method in mathematics, also known as the Wentzel-Kramers-Brillouin (WKB) method, is the focus of this introductory treatment. Author John Heading successfully steers a course between simplistic and rigorous approaches to provide a concise overview for advanced undergraduates and graduate students. Topics include the Stokes phenomenon, one and two transition points, and applications. 1962 edition"-- Provided by publisher. Mathematische Physik Differential equations, Linear Numerical solutions Integrals Mathematical physics MATHEMATICS / Differential Equations bisacsh Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Numerische Mathematik (DE-588)4042805-9 s 1\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Heading, John An introduction to phase-integral methods Mathematische Physik Differential equations, Linear Numerical solutions Integrals Mathematical physics MATHEMATICS / Differential Equations bisacsh Numerische Mathematik (DE-588)4042805-9 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4042805-9 (DE-588)4044779-0 |
title | An introduction to phase-integral methods |
title_auth | An introduction to phase-integral methods |
title_exact_search | An introduction to phase-integral methods |
title_full | An introduction to phase-integral methods John Heading |
title_fullStr | An introduction to phase-integral methods John Heading |
title_full_unstemmed | An introduction to phase-integral methods John Heading |
title_short | An introduction to phase-integral methods |
title_sort | an introduction to phase integral methods |
topic | Mathematische Physik Differential equations, Linear Numerical solutions Integrals Mathematical physics MATHEMATICS / Differential Equations bisacsh Numerische Mathematik (DE-588)4042805-9 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Mathematische Physik Differential equations, Linear Numerical solutions Integrals Mathematical physics MATHEMATICS / Differential Equations Numerische Mathematik Partielle Differentialgleichung |
work_keys_str_mv | AT headingjohn anintroductiontophaseintegralmethods |