Technologies for converting biomass to useful energy: combustion, gasification, pyrolysis, torrefaction and fermentation
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
CRC Press
2013
|
Schriftenreihe: | Sustainable energy developments
4 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Literaturangaben |
Beschreibung: | XLI, 504 S. Ill., graph. Darst. 25 cm |
ISBN: | 9780415620888 0415620880 9780203120262 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV040983437 | ||
003 | DE-604 | ||
005 | 20140416 | ||
007 | t | ||
008 | 130506s2013 ad|| |||| 00||| eng d | ||
020 | |a 9780415620888 |c (hbk.) £82.00 |9 978-0-415-62088-8 | ||
020 | |a 0415620880 |c (hbk.) £82.00 |9 0-415-62088-0 | ||
020 | |a 9780203120262 |c (ebook) |9 978-0-203-12026-2 | ||
035 | |a (OCoLC)847122435 | ||
035 | |a (DE-599)OBVAC10758346 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-634 |a DE-703 | ||
082 | 0 | |a 662.88 | |
084 | |a ZP 3760 |0 (DE-625)157974: |2 rvk | ||
084 | |a ERG 780f |2 stub | ||
245 | 1 | 0 | |a Technologies for converting biomass to useful energy |b combustion, gasification, pyrolysis, torrefaction and fermentation |c ed.: Erik Dahlquist |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b CRC Press |c 2013 | |
300 | |a XLI, 504 S. |b Ill., graph. Darst. |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Sustainable energy developments |v 4 | |
490 | 0 | |a A Balkema book | |
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Biomasse |0 (DE-588)4006877-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bioenergie |0 (DE-588)4145596-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biokraftstoff |0 (DE-588)4145658-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biotechnologie |0 (DE-588)4069491-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erneuerbare Energien |0 (DE-588)4068598-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Technische Chemie |0 (DE-588)4078178-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Energieerzeugung |0 (DE-588)4070813-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bioenergieerzeugung |0 (DE-588)4145597-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biokonversion |0 (DE-588)4145610-5 |2 gnd |9 rswk-swf |
653 | |a Biomass conversion. | ||
653 | |a Biomass energy. | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Biomasse |0 (DE-588)4006877-8 |D s |
689 | 0 | 1 | |a Biokonversion |0 (DE-588)4145610-5 |D s |
689 | 0 | 2 | |a Bioenergieerzeugung |0 (DE-588)4145597-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Biomasse |0 (DE-588)4006877-8 |D s |
689 | 1 | 1 | |a Bioenergieerzeugung |0 (DE-588)4145597-6 |D s |
689 | 1 | 2 | |a Biokraftstoff |0 (DE-588)4145658-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Erneuerbare Energien |0 (DE-588)4068598-6 |D s |
689 | 2 | 1 | |a Energieerzeugung |0 (DE-588)4070813-5 |D s |
689 | 2 | 2 | |a Bioenergie |0 (DE-588)4145596-4 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Technische Chemie |0 (DE-588)4078178-1 |D s |
689 | 3 | 1 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |D s |
689 | 3 | 2 | |a Biotechnologie |0 (DE-588)4069491-4 |D s |
689 | 3 | 3 | |a Erneuerbare Energien |0 (DE-588)4068598-6 |D s |
689 | 3 | 4 | |a Bioenergieerzeugung |0 (DE-588)4145597-6 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Dahlquist, Erik |0 (DE-588)1035246341 |4 edt | |
830 | 0 | |a Sustainable energy developments |v 4 |w (DE-604)BV040312835 |9 4 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025961380&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025961380&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-025961380 |
Datensatz im Suchindex
_version_ | 1804150303550865408 |
---|---|
adam_text | Table
of
contents
About the book series vii
Editorial board
ix
Contributors
xxxiii
Foreword by Yang Yong-Ping
xxxv
Editor s Foreword
xxxvii
About the editor
xxxix
Acknowledgements
xli
1.
An overview of thermal biomass conversion technologies I
Erik Dahlquist
2.
Simulations of combustion and emissions characteristics of biomass-derived fuels
5
Suresh K. Aggarwal
2.1
Introduction
5
2.2
Thermochemical conversion processes
6
2.2.1
Direct biomass combustion
6
2.2.2
Biomass pyrolysis
7
2.2.3
Biomass gasification
10
2.3
Syngas and
biogas
combustion and emissions
11
2.3.1
Syngas combustion and emissions
И
2.3.2
Non-premixed and partially premixed syngas flames
19
2.3.3
High pressure and turbulent syngas flames
23
2.3.4
Syngas combustion in practical devices
25
2.4
Biogas
combustion and emissions
26
2.5
Concluding remarks
28
3.
Energy conversion through combustion of biomass including animal waste
35
Kalyan Annamalai, Siva Sankar Thanapal, Ben Lawrence, Wei Chen,
Aubrey Spear
&
John Sweeten
3.1
Introduction
35
3.2
Overview on energy conversion from animal wastes
36
3.2.1
Manuresource
36
3.3
Biological conversion
39
3.3.1
Digestion
39
3.3.2
Fermentation
39
3.4
Thermal energy conversion
40
3.5
Fuel properties
42
3.5.1
Proximate and ultimate analyses
42
3.5.2
Empirical formula for heat values
43
3.5.2.1
The higher heating value per unit mass of fuel
43
3.5.2.2
The higher heat value per unit stoichiometric oxygen
47
3.5.2.3
Heat value of volatile matter
51
3.5.2.4
Volatile matter and stoichiometry
51
xxi
xxii
Table of
contents
3.5.2.5
Stoichiometric A:F
51
3.5.2.6
Flue
gas
volume
51
3.5.3
Fuel change
and effect on
CO2
52
3.5.4
Air
flow rate and multi-fuels firing
53
3.5.5
CO2 and fuel substitution
53
3.6
TGA
studies on pyrolysis and ignition
53
3.6.1
Pyrolysis
54
3.7
Model
54
3.7.1
Single
reaction model: Conventional
Arrhenius
method
55
3.7.2
Parallel Reaction Model
(PRM)
56
3.8
Chemical kinetics
58
3.8.1
Activation energy from single reaction model
58
3.8.2
Activation energies from parallel reaction model
59
3.9
Ignition
59
3.9.1
Ignition temperature
59
3.10
Cofiring
61
3.10.1
Experimental set up and procedure
62
3.10.2
Experimental parameters
65
3.10.3
СЬ
and equivalence ratio
65
3.10.4
CO and CO2 emissions
65
3.10.5
Burnt fraction
69
3.10.6
NOX emissions
69
3.10.7
Fuel nitrogen conversion efficiency
72
3.11
Cofiring FB with coal
75
3.
Π
.1
NO emissions with longer reactor
7 5
3.11.2
Effect of blend ratio
76
3.12
Reburn
76
3.13
Low NO* Burners (LNB)
80
3.14
Gasification
80
3.14.1
Experimental setup
81
3.14.2
Experimentation
82
3.14.3
Experimental procedure
83
3.14.4
Results and discussion
83
3.14.4.1
Fuel properties
83
3.14.4.2
Experimental results and discussion
83
3.14.4.2.1
Temperature profiles for air gasification
84
3.14.4.2.2
Temperature profiles for enriched air gasification
and CO2
:
O2 gasification
85
3.14.4.2.3
Gas composition results with air
86
3.14.4.2.4
Gas composition results with enriched air and
CO2:O2 mixture
88
3.14.4.2.5
HHV of gases and energy conversion efficiency
89
3.15
Summary and conclusions
91
Co-combustion coal and bioenergy and biomass gasification: Chinese experiences
97
Changqing Dong
&
Xiaoying
Ни
4.1
Biomass resources in China
97
4.1.1
Agricultural residues
97
4.1.2
Livestock manure
98
4.1.3
Municipal and industrial waste
99
4.1.4
Wood processing remainders
99
4.2
Co-combustion in China
99
4.2.1
Introduction
99
Table of
contents
xxiii
4.2.2
Methods and technologies
100
4.2.3
Advantages and disadvantages
101
4.2.4
Research status
102
4.2.4.1
Different biomass for co-combustion
102
4.2.4.2
Biomass gasification gas for co-combustion
106
4.2.4.3
Pollutant emissions from co-combustion
109
4.2.4.3.1
The influence of solid biomass fuel
110
4.2.4.3.2
The influence of biomass gasification gas
110
4.2.5
The applications of co-combustion in China
112
4.2.5.
í
Chuang Municipality Lutang Sugar Factory
112
4.2.5.2
Fengxian XinYuan Biomass CHP Thermo Power Co., Ltd
113
4.2.5.3
Heilongjiang Jiansanjiang Heating and Power Plant
114
4.2.5.4
Baoying Xiexin Biomass Power Co., Ltd
114
4.2.6
Shiliquan power plant
П5
4.3
Biomass gasification in China
116
4.3.1
Introduction
116
4.3.2
Gasification technology development
116
4.3.3
Biomass gasification gas as boiler fuel
116
4.3.3.1
The feasibility of biomass gasification gas as fuel
116
4.3.3.2
The superiority of biomass gasification gas as fuel
117
4.3.4
Biomass gasification gas used for drying
118
4.3.5
Biomass gasification power generation
118
4.3.6
Biomass gasification for gas supply
120
4.3.7
Hydrogen production from biomass gasification
121
4.3.8
Biomass gasification polygeneration scheme
122
4.3.9
Policy-oriented biomass gasification in China
123
4.3.9.1
Guide public awareness
124
4.3.9.2
Government investment in R&D of key technologies
124
4.3.9.3
Fiscal incentives and market regulation measures
124
4.4
Conclusions
124
4.4.1
Co-combustion
124
4.4.2
Gasification
125
5.
Biomass combustion and chemical looping for carbon capture and storage
129
Umberto
Desideri
&
Francesco Fantozzi
5.1
Feedstock properties
129
5.1.
í
Biomass and bioftiels definition and classification
129
5.1.2
Biomass composition and analysis
131
5.1.3
Biomass analysis
132
5.
1
.3.1
Moisture content (EN
14774-2, 2009) 133
5.1.3.2
Ash content (EN
14775, 2009) 133
5.1.3.3
Volatile matter (EN
15148, 2009) 133
5.1.3.4
Heating value (EN
14918, 2009) 134
5.1.3.5
Carbon, hydrogen and nitrogen content (EN
15104, 2011) 135
5.1.3.6
Density (EN
15103,2010) 136
5.1.3.7
Sulfur content analysis (EN
15289, 2011 ) 136
5.1.3.8
Chlorine and fluorine content analysis (EN
15289, 2011) 136
5.1.3.9
Chemical analysis (EN
15297, 2011
and EN
15290, 2011) 136
5.1.3.10
Size (CEN/TS
15149-1:2006,
CEN/TS
15149-2:2006,
CEN/TS
15149-3:2006) 136
5.2
Combustion basics 137
5.2.1
Introduction 137
5.2.2
Heating and drying I3°
xxiv
Table of
contents
5.2.3
Pyrolysis
and devolatilization
140
5.2.4
Char
oxidation (glowing or smoldering
combustion)
141
5.2.5
Volatiles
oxidation (flaming
combustion)
143
5.2.6
Combustion rates,
flame temperature and efficiency
144
5.3
Combustors
148
5.3.1
Introduction to biomass combustion systems
148
5.3.2
Fixed bed combustion
150
5.3.2.1
Pile burners
150
5.3.2.2
Grate burners
152
5.3.3
Moving bed combustors
157
5.3.3.1
Suspension burners
157
5.3.3.2
Fluidized
bed combustors
15 8
5.3.4
Design and operation issues
159
5.3.4.1
Design principles
159
5.3.4.2
Deposit and slagging problems
162
5.4
Chemical looping combustion
164
5.4.1
Chemical looping processes
165
5.4.2
Chemical looping reactions
167
6.
Biomass and black liquor gasification
175
Klas
Engvall, Tntls Liliedahl
&
Erik Dahlquist
6.1
Introduction
175
6.2
Theory of gasification
176
6.3
Operating conditions of importance for the product composition 1
78
6.3.1
Fuel types and properties
178
6.3.1.1
Biomass
178
6.3.1.2
Black liquor
178
6.3.1.3
Biomass properties of importance for gasification
179
6.3.2
Gasifying agent
180
6.3.3
Temperature
181
6.4
Gasification systems
181
6.4.1
Gasification technologies
182
6.4.1.1
Fixed bed
182
6.4.1.1.1
Updraft gasifiers
182
6.4.1.1.2
Downdraft gasifers
183
6.4.1.1.3
Cross-draft gasifers
183
6.4.
ł
.2
Fluidized
bed gasifiers
184
6.4.1.2.1
BFB and CFB reactors
184
6.4.1.2.2
Dual
fluidized
bed reactors
185
6.4.1.3
Entrained flow gasifier
186
6.4.2
Gas cleaning and upgrading
188
6.4.2.1
Tar and tar removal
189
6.4.2.2
Thermal and catalytic tar decomposition
191
6.4.2.2.1
Thermal processes for tar destruction
191
6.4.2.2.2
Catalytic processes for tar destruction
191
6.4.2.2.3
Dolomite catalysts
192
6.4.2.2.4
Nickel catalysts
193
6.4.2.2.5
Alkali metal catalysts
193
6.4.2.3
Removal of other impurities found in the product gas
193
6.4.2.3.1
Alkali metal compounds
193
6.4.2.3.2
Fuel-bound nitrogen
194
6.4.2.3.3
Sulfur
194
6.4.23
A Chlorine
194
Table of
contents
xxv
6.5
Gasification
applications
195
6.5.1
Biomass
gasification
195
6.5.1.1
BFB gasifier
at Skive 1
95
6.5.1.2
Cortus WoodRoll
gasification technology 1
96
6.5.1.2.1 Güssing
plant
197
6.5.2
Black
liquor gasification
199
6.5.2.1
BL
gasification using
fluidized
bed technology
199
6.5.2.2
BL
gasification using entrained flow technology
201
6.6
Modelling of gasification systems
203
6.6.1
Material and energy balance models
203
6.6.1.1
An empirical model for
fluidized
bed gasification
205
6.6.2
Kinetic models
206
6.6.3
Equilibrium models
208
6.6.3.1
Simulations using an equilibrium model compared to
experimental data
210
6.7
Outlook
212
6.7.1
Biomass gasification
213
6.7.2
Black liquor gasification
213
7.
Biomass conversion through
torréfaction
217
Anders
Nordin,
Linda
Pommer,
Martin Nordwaeger
&
Ingemar Olofsson
7.1
Introduction
217
7.2
Torréfaction
history
218
7.2.1
Origin of
torréfaction
processes
218
7.2.2
Modern
torréfaction
work
( 1
980-)
219
7.3
Torréfaction
process
219
7.3.1
Energy and mass balances
221
7.3.2
Solid product characteristics
221
7.3.2.1
Elemental compositional changes
222
7.3.2.2
Heating value and volatile content
223
7.3.2.3
Friability, grinding energy and powder characteristics
223
7.3.2.4
Feeding characteristics
224
7.3.2.5 Hydrophobie
properties and fungal durability
225
7.3.2.6
Molecular composition and changes
226
7.3.3
Gases produced
229
7.3.3.1
Permanent gases
229
7.3.3.2
Condensable gases
229
7.4
Subsequent refinement processes
230
7.4.1
Washing
230
7.4.2
Densification
231
7.4.2.1
Pelleting
231
7.4.2.2
Briquetting
232
7.5
Torréfaction
technologies
232
7.5.1
General
232
7.5.2
Technologies under development or demonstration
233
7.5.3
Status of the present production plants erected
233
7.6
End-use experience
234
7.7
System analyses and process integration
235
7.7.1
Importance of total supply chain analysis
235
7.7.2
Process and system integration
235
7.8
Economic aspects of
torréfaction
systems
236
7.8.1
Investment and operating costs
237
7.8.2
Costs versus total supply chain savings
239
7.9
Outlook 240
xxvi
Table of contents
8.
Biomass pyrolysis for energy and fuels production
245
Efthymios Kantarelis, Weihong Yang
&
Włodzimierz Blasiak
8.1
Introduction
245
8.2
Technologies
247
8.2.1
Biomass reception and storage
248
8.2.2
Fast pyrolysis reactors
248
8.2.2.1
Bubbling
fluidized
beds
248
8.2.2.2
Circulating
fluidized
bed reactors
249
8.2.2.3
Rotating cone reactors
251
8.2.3
Char separation
252
8.2.4
Liquid recovery
252
8.3
Products and applications
253
8.3.1
Char
253
8.3.2
Bio-oil
253
8.3.2.1
Composition and properties
253
8.3.2.1.1
Homogeneity
254
8.3.2.1.2
Water content
255
8.3.2.1.3
Viscosity/rheological properties
255
8.3.2.1.4
Acidity
256
8.3.2.1.5
Heating value
256
8.3.2.1.6
Stability
256
8.3.2.1.7
Health and safety
257
8.3.2.1.8
Other important properties
257
8.3.2.2
Bio-oil applications
257
8.3.2.2.1
Heat and power
258
8.3.2.2.2
Gasoline and
diesel
fuels
260
8.4
Modeling
265
8.4.1
One step models
265
8.4.2
Models with competing parallel reactions
265
8.4.2.1
Models with secondary reactions
266
8.5
Recent trends and developments
269
8.6
Conclusions
271
9.
Solid-state
ethanol
production from biomass
279
Shi-Zhong Li
9.1
Introduction
279
9.1.1
The history of SSF
279
9.2
The principle of SSF
280
9.2.1
Microorganisms in SSF
280
9.2.2
The substrate in SSF
280
9.2.2.1
The source of the substrate
280
9.2.2.2
The character of the substrate
280
9.2.2.3
The water content of the substrate
280
9.2.2.4
The solid-phase properties of substance
281
9.3
The process of SSF
281
9.3.
1 The characteristics of SSF
281
9.3.1.1
Cell growth and measurement of products
281
9.3.1.2
Sterile control
281
9.3.2
The effective factors of SSF
281
9.3.2.
1 Carbon and nitrogen sources
282
9.3.2.2
Temperature and heat transfer
282
9.3.2.3
Moisture and water activity
283
Table of
contents
xxvii
9.3.2.4
Ventilation
and mass transfer
283
9.3.2.5 pH
value
283
9.3.3
SSF reactors
283
9.3.3.1
Static SSF reactor
284
9.3.3.2
Dynamic SSF reactor
284
9.3.3.3
Rotary drum SSF reactor and modeling progress
284
9.4
Progress of SSF research
285
9.5
Application of SSF in biomass energy fields
286
9.5.1
Sweet sorghum stalk liquid fermentation technology
287
9.5.2
Sweet sorghum stalk SSF technology
288
9.5.3
The prospect of SSF
288
9.5.3.1
Basic theory for research
288
9.5.3.2
SSF reactor design and scale-up
288
9.5.3.3
The SSF process and product contamination control
289
10.
Optimization of
biogas
processes: European experiences
293
Anna
Behrendt,
S.
Drescher-Härtung & Thorsten Ahrens
10.1
Introduction
293
10.2 Substrates
for
biogas
processes and specialities
293
10.2.1
Available substrate streams for
biogas
processes, composition and
organic amounts
293
10.2.1.1
Water and organic matter concentration
294
10.2.1.2
Requirements for
pretreatment
including sorting
and sanitation
294
10.2.2 Biogas
potentials and energy output
296
10.2.2.1
Identification of
biogas
potentials
296
10.2.2.2 Biogas
potential results and energy output
297
10.2.2.3
Comparison of energy outputs through
biogas
and
combustion of material
300
10.2.3
Conclusion: Can energy from waste compete with energy
from renewable products?
301
10.3
Current
biogas
technologies and challenges
301
10.3.1 Biogas
fermenter
technology
301
10.3.1.1
Dry digestion application
-
Examples of
biogas
plants in Germany
302
10.3.1.1.1
Plug flow
fermenter
303
10.3.1.1.2
Tower
fermenter
303
10.3.1.1.3
Garage
fermenter
303
10.3.1.2
Wet digestion applications
304
10.3.1.2.1
System example
305
10.3.1.2.2
Use of residual waste
305
10.3.1.3
Laboratory scale technology
305
10.3.1.3.1
Plug flow
fermenter
306
10.3.1.3.2
Garage
fermenter
306
10.3.2
Regional implementation of
fermenter
technology
306
10.3.2.1
One European example: Conditions in Estonia (Kiili
Vald)
307
10.3.2.2
The waste management situation in Kiili
Vald
308
10.3.2.3
The waste management situation in Germany
309
10.4
Future prospects and individual regional energy solutions
310
10.4.1
Central and local
biogas
plants
310
10.4.1.1
Individual farm plant
310
10.4.1.2
Biogas
parks
310
xxviii
Table of
contents
10.4.2
Biogas
use
310
10.5
Questions for discussions
311
11.
Biogas
-
sustainable energy solutions in Nigeria
315
Adeola Ijeoma Eleri
11.1
Introduction
315
11.2
Review of Nigeria s current energy situation
316
11.3
Biogas
technology in Nigeria
316
11.3.1
Technical characteristics of
biogas
digester
318
11.3.2
Mechanisms of methanogenesis
319
11.4
Potentials of
biogas
technology for sustainable development
319
11.5
Barriers to
biogas
technology
319
11.6
Recommendations for scaling up
biogas
technology in Nigeria
321
11.7
Conclusions
321
12.
The influence of biodegradability on the anaerobic conversion of biomass
into bioenergy
325
Rodrigo
A. Laba
tut
12.1
Introduction
325
12.2
Theoretical aspects and assessment of substrate biodegradability
326
12.3
Factors limiting substrate biodegradability
329
12.3.1
Bioenergetics: Cell synthesis vs. metabolic energy
329
12.3.2
Polymer complexity
331
12.3.2.1
Carbohydrates
331
12.3.2.2
Proteins
333
12.3.2.3
Lipids
334
12.3.3
Inhibition of biochemical reactions
336
12.4
Biodegradability of complex, particulate influents: Co-digestion studies
337
12.4.1
The effect of substrate composition on fD and
£„:
BMP studies
337
12.4.2
Implications of influent biodegradability on anaerobic
digestion systems
338
12.5
Conclusions
340
13.
Pellet and briquette production
345
Torbjörn
A. Les
tänder
13.1
Introduction
345
13.2
Standardization of solid biofuels
345
13.3
Feedstock for densification
347
13.3.1
Raw materials
347
13.3.2
Biomass has orthotropic mechanical properties
348
13.4
Pretreatment
before densification
348
13.4.1
Grinding
349
13.4.2
Pre-heating (e.g. steam addition)
349
13.4.3
Steam explosion
349
13.4.4
Ammonia fiber expansion
349
13.4.5
Drying
349
13.4.6
Torréfaction
350
13.5
Densification techniques
351
13.6
Mechanisms of bonding
352
13.7
Health and safety aspects when handling pellets and briquettes
353
13.8
Conclusion
353
13.9
Questions for discussion
353
Table of
contents
xxix
14.
Dynamic modeling and simulation of power plants with biomass as a fuel
357
Yrjö Majanne
14.1
Introduction
357
14.1.1
Use of biomass as an energy source
357
14.1.2
Modeling of biomass combustion
358
14.2
Simulation in power plant design and operation
358
14.2.1
Simulation tools
359
14.2.2
Simulator requirements
359
14.3
Biomass as a fuel
360
14.4
Biomass-fired power plants
361
14.4.1
Grate combustion
361
14.4.2
Fluidized
bed combustion
363
14.4.2.1
Bubbling fluidized bed combustion
364
14.4.2.2
Circulating fluidized bed combustion
365
14.5
Modelling of biomass combustion
365
14.5.1
Thermodynamic properties
365
14.5.1.1
Thermal conductivity
365
14.5.1.2
Specific heat
366
14.5.1.3
Heat of formation
366
14.5.1.4
Heat of reaction
366
14.5.1.5
Ignition temperature
366
14.5.2
Combustion process
366
14.5.2.1
Drying and ignition
367
14.5.2.2
Pyrolysis and combustion of volatile components
368
14.5.2.3
Combustion of remaining charcoal
368
14.6
Conclusions
369
14.7
Questions for discussions
370
15.
Optimal use of bioenergy by advanced modeling and control
373
Bernt
Lie
&
Erik Dahlquist
15.1
Current and future work in bioenergy system automation
373
15.2
Overview of processes
375
15.2.1
Biomass
375
15.2.2
Thermochemical processes
376
15.2.3
Biochemical processes
378
15.2.3.1
Fermentation
379
15.2.3.2
Anaerobic digestion
379
15.2.3.3
Biochemical processing
380
15.2.4
Characterization of processes
381
15.3
Processinformation
381
15.3.1
Sensors and instrumentation
3 81
15.3.2
Modeling and process description
383
15.3.2.1
Mechanistic models
384
15.3.2.2
Models and model error
385
15.3.2.3
Empirical models
386
15.3.2.4
Model building and model simulation
386
15.3.3
Monitoring and fault detection
387
15.4
Process operation
387
15.4.1
Control and maintenance
387
15.4.2
Management and integration into product grids
389
15.5
Diagnostics and control using on-line physical simulation models
390
15.5.1
Introduction
390
15.5.2
Approach description
391
xxx
Table of
contents
15.5.3
Boiler
391
15.5.4
Other energy
conversion
processes
393
15.5.5
Model validation and results
394
15.5.6
Discussion
394
15.6
Conclusions and questions for discussion
395
16.
Energy and exergy analyses of power generation systems using biomass
and coal co-firing
401
Marc A. Rosen, Bale V Reddy
&
Shoaib Mehmood
16.1
Introduction
401
16.2
Background
402
16.2.1
Co-firing and its advantages
402
16.2.2
Global status of co-firing
402
16.2.3
Properties of biomass and coal
403
16.2.4
Technology options for
co-
firing
404
16.2.4.1
Direct co-firing
404
16.2.4.2
Parallel co-firing
405
16.2.4.3
Indirect co-firing
405
16.3
Relevant studies on co-firing
406
16.3.1
Co-firing studies
406
16.3.2
Experimental studies
407
16.3.3
Modeling and simulation studies
407
16.3.4
Energy and exergy analyses
408
16.3.5
Economic studies
408
16.4
Characterstics of biomass fuels and coals
408
16.5
Co-firing system configurations
410
16.6
Thermodynamic modeling, simulation and analysis of co-firing systems
411
16.6.1
Approach and methodology
411
16.6.2
Assumptions and data
412
16.6.3
Governing equations
413
16.6.3.1
Analysis of boiler
414
16.6.3.2
Analysis of high pressure turbine
419
16.6.3.3
Analysis of low pressure turbine
419
16.6.3.4
Analysis of condenser
419
16.6.3.5
Analysis of condensate pump
419
16.6.3.6
Analysis of boiler feed pump
419
16.6.3.7
Analysis of open feed water heater
420
16.6.4
Boiler and overall energy and exergy efficiencies
420
16.7
Effect of biomass
co-
firing on coal power generation systems
420
16.7.1
Effect of co-firing on overall system performance
421
16.7.2
Effect of co-firing on energy and exergy losses
424
16.7.2.1
Effect of co-firing on furnace exit gas temperature
426
16.7.2.2
Effect of co-firing on energy losses and external
exergy losses
427
16.7.2.3
Effect of co-firing on irreversibilities
431
16.7.3
Effect of
co-
firing on efficiencies
435
16.7.3.1
Boiler energy efficiency
435
16.7.3.2
Plant energy efficiency
436
16.7.3.3
Boiler exergy efficiency
437
16.7.3.4
Plant exergy efficiency
440
16.7.4
Effect of co-firing on emissions
440
16.7.4.1
Energy-based CO2 emission factors
442
Table of
contents
xxxi
16.7.4.2
Energy-based
NO^
emission factors
445
16.7.4.3
Energy-based
ЅОЛ
emission factors
448
16.8
Conclusions
448
16.9
Questions for discussions
450
17.
Control of
bioconversion
processes
453
K.P.
Madhavan
&
Sharad Bhartiya
17.1
Introduction
453
17.2
Process dynamics
456
17.2.1
Physico-chemical models
456
17.2.1.1
Single vessel continuous digester for wood pulping
457
17.2.1.2
A physico-chemical model for the pulp digester
458
17.3
Approximate models to capture essential dynamics
460
17.3.1
Single capacity element: first order system
460
17.3.2
Second order system
462
17.3.3
Dynamics of higher order processes
462
17.3.4
Pure time delay processes
463
17.3.5
Control relevant models for process control systems design
465
17.3.6
Linear system identification: single-vessel digester case study
465
17.3.7
Discrete-time models for sampled data system
466
17.3.8
Discrete-time models for nonlinear processes
469
1
7.4
Basic strategies for control
470
17.4.1
Single feedback loop control
471
17.4.2
Internal model control structure
472
17.4.3
PI control of lower heater Kappa and blowline Kappa number
475
17.4.4
Single-loop control with disturbance compensation
475
17
A A.I Input disturbances: cascade control
475
17.4.4.2
Output disturbances: feedforward-feedback control
478
17.4.5
Feedback control with time delay compensation: the Smith predictor
478
17.4.6
Single loop control with nonlinear compensation
480
17.5
Unit-wide or
multivariable
control
481
17.5.1
Decentralized approach
481
17.5.1.1
Measures of
multivariable
interaction: relative
gain array (RGA)
482
17.5.
1
.2
Interaction analysis for the single vessel digester
483
17.6
Multiple single loop control using interaction compensators: Decoupler design
484
17.6.1
Decoupler design for single vessel digester
485
17.7
Model predictive control: A multivariable control strategy
485
17.7.1
Linear model predictive control for the single vessel digester
488
17.7.2
Control results and discussion
489
17.8
Real-time optimization
492
17.9
Concluding remarks
495
17.10
Questions for discussion
496
Subject index
499
Officially, the use of biomass for energy meets only 1O-13°/o of the
totat
global energy demand of
140 000
TWh per year. Still, thirty years ago the official figure was zero, as only traded biomass
was included. While the actual production of biomass is in the range of
270 000
TWh per year,
most of this is not used for energy purposes, and mostly it is not used very efficiently. Therefore,
there is a need for new methods for converting biomass into refined products like chemicals,
fuels, wood and paper products, heat, cooling and electric power. Obviously, some biomass
is also used as food
-
our primary life necessity. The different types of conversion methods
covered in this volume are
biogas
production, bio-ethanol production,
torréfaction, pyrolysis,
high temperature gasification and combustion.
This book covers the suitabiiity of different methods for conversion of different types of biomass.
Different versions of the conversion methods are presented
-
both existing methods and those
being developed for the future. System optimization using modeling methods and simulation are
analyzed to determine advantages and disadvantages of different solutions.
Many international experts have contributed to provide an up-to-date view of the situation all
over the world. These global perspectives and the inclusion of so much expertise of distinguished
international researchers and professionals make this book unique.
This book will prove useful and inspiring to professionals, engineers, researchers and students as
well as to those working for different authorities and organizations.
SUSTAINABLE ENERGY DEVELOPMENTS
-
VOLUME
4
ISSN
2164-0645
The book series addresses novel techniques and measures related to sustainable energy
developments with an interdisciplinary focus that cuts across all fields of science, engineering
and technology linking renewable energy and other sustainable materials with human society. It
addresses renewable energy sources and sustainable policy options, including energy efficiency
and energy conservation to provide long-term solutions for key-problems of industrialized,
developing and transition countries by fostering clean and domestically available energy and,
concurrently, decreasing dependence on fossil fuel imports and reducing greenhouse gas
emissions. Possible applications will be addressed not only from a technical point of view, but
also from economic, financial, social, political, legislative and regulatory viewpoints. The book
series aims to become a state-of-the-art source for a large group of readers comprising different
stakeholders and professionals, including government and non-governmental organizations and
institutions, international funding agencies, universities, public health and energy institutions,
and other relevant institutions.
SERIES EDITOR:
Jochen Bundschuh
ISBN 978-0415-62088-8
CRC
Press
Tavlor
&
Franca
Of
аир
ÓO0O
Sraten Sound
Parway
.
v.v
iurte
300,
Soca ftwrj*-
- ■_
i i-nä^
2 3
io
XC
1«да
2
?ж
Soufre.
МЛоп
Рал
«ungoun.
Oj«»
ΟΧΙ
4
4Rr.
780415
620888
¿n
informa ousiness
|
any_adam_object | 1 |
author2 | Dahlquist, Erik |
author2_role | edt |
author2_variant | e d ed |
author_GND | (DE-588)1035246341 |
author_facet | Dahlquist, Erik |
building | Verbundindex |
bvnumber | BV040983437 |
classification_rvk | ZP 3760 |
classification_tum | ERG 780f |
ctrlnum | (OCoLC)847122435 (DE-599)OBVAC10758346 |
dewey-full | 662.88 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 662 - Explosives, fuels & related products |
dewey-raw | 662.88 |
dewey-search | 662.88 |
dewey-sort | 3662.88 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Energietechnik, Energiewirtschaft Energietechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03488nam a2200757zcb4500</leader><controlfield tag="001">BV040983437</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140416 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130506s2013 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780415620888</subfield><subfield code="c">(hbk.) £82.00</subfield><subfield code="9">978-0-415-62088-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0415620880</subfield><subfield code="c">(hbk.) £82.00</subfield><subfield code="9">0-415-62088-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780203120262</subfield><subfield code="c">(ebook)</subfield><subfield code="9">978-0-203-12026-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)847122435</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC10758346</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">662.88</subfield><subfield code="2"></subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3760</subfield><subfield code="0">(DE-625)157974:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 780f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Technologies for converting biomass to useful energy</subfield><subfield code="b">combustion, gasification, pyrolysis, torrefaction and fermentation</subfield><subfield code="c">ed.: Erik Dahlquist</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XLI, 504 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Sustainable energy developments</subfield><subfield code="v">4</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Balkema book</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biomasse</subfield><subfield code="0">(DE-588)4006877-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bioenergie</subfield><subfield code="0">(DE-588)4145596-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biokraftstoff</subfield><subfield code="0">(DE-588)4145658-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erneuerbare Energien</subfield><subfield code="0">(DE-588)4068598-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Chemie</subfield><subfield code="0">(DE-588)4078178-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieerzeugung</subfield><subfield code="0">(DE-588)4070813-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bioenergieerzeugung</subfield><subfield code="0">(DE-588)4145597-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biokonversion</subfield><subfield code="0">(DE-588)4145610-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biomass conversion.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biomass energy.</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biomasse</subfield><subfield code="0">(DE-588)4006877-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Biokonversion</subfield><subfield code="0">(DE-588)4145610-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Bioenergieerzeugung</subfield><subfield code="0">(DE-588)4145597-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Biomasse</subfield><subfield code="0">(DE-588)4006877-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Bioenergieerzeugung</subfield><subfield code="0">(DE-588)4145597-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Biokraftstoff</subfield><subfield code="0">(DE-588)4145658-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Erneuerbare Energien</subfield><subfield code="0">(DE-588)4068598-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Energieerzeugung</subfield><subfield code="0">(DE-588)4070813-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Bioenergie</subfield><subfield code="0">(DE-588)4145596-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Technische Chemie</subfield><subfield code="0">(DE-588)4078178-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="3"><subfield code="a">Erneuerbare Energien</subfield><subfield code="0">(DE-588)4068598-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="4"><subfield code="a">Bioenergieerzeugung</subfield><subfield code="0">(DE-588)4145597-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dahlquist, Erik</subfield><subfield code="0">(DE-588)1035246341</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Sustainable energy developments</subfield><subfield code="v">4</subfield><subfield code="w">(DE-604)BV040312835</subfield><subfield code="9">4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025961380&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025961380&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025961380</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV040983437 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:36:47Z |
institution | BVB |
isbn | 9780415620888 0415620880 9780203120262 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025961380 |
oclc_num | 847122435 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-703 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-703 |
physical | XLI, 504 S. Ill., graph. Darst. 25 cm |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | CRC Press |
record_format | marc |
series | Sustainable energy developments |
series2 | Sustainable energy developments A Balkema book |
spelling | Technologies for converting biomass to useful energy combustion, gasification, pyrolysis, torrefaction and fermentation ed.: Erik Dahlquist Boca Raton, Fla. [u.a.] CRC Press 2013 XLI, 504 S. Ill., graph. Darst. 25 cm txt rdacontent n rdamedia nc rdacarrier Sustainable energy developments 4 A Balkema book Literaturangaben Biomasse (DE-588)4006877-8 gnd rswk-swf Bioenergie (DE-588)4145596-4 gnd rswk-swf Biokraftstoff (DE-588)4145658-0 gnd rswk-swf Chemische Verfahrenstechnik (DE-588)4069941-9 gnd rswk-swf Biotechnologie (DE-588)4069491-4 gnd rswk-swf Erneuerbare Energien (DE-588)4068598-6 gnd rswk-swf Technische Chemie (DE-588)4078178-1 gnd rswk-swf Energieerzeugung (DE-588)4070813-5 gnd rswk-swf Bioenergieerzeugung (DE-588)4145597-6 gnd rswk-swf Biokonversion (DE-588)4145610-5 gnd rswk-swf Biomass conversion. Biomass energy. (DE-588)4143413-4 Aufsatzsammlung gnd-content Biomasse (DE-588)4006877-8 s Biokonversion (DE-588)4145610-5 s Bioenergieerzeugung (DE-588)4145597-6 s DE-604 Biokraftstoff (DE-588)4145658-0 s Erneuerbare Energien (DE-588)4068598-6 s Energieerzeugung (DE-588)4070813-5 s Bioenergie (DE-588)4145596-4 s Technische Chemie (DE-588)4078178-1 s Chemische Verfahrenstechnik (DE-588)4069941-9 s Biotechnologie (DE-588)4069491-4 s Dahlquist, Erik (DE-588)1035246341 edt Sustainable energy developments 4 (DE-604)BV040312835 4 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025961380&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025961380&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Technologies for converting biomass to useful energy combustion, gasification, pyrolysis, torrefaction and fermentation Sustainable energy developments Biomasse (DE-588)4006877-8 gnd Bioenergie (DE-588)4145596-4 gnd Biokraftstoff (DE-588)4145658-0 gnd Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Biotechnologie (DE-588)4069491-4 gnd Erneuerbare Energien (DE-588)4068598-6 gnd Technische Chemie (DE-588)4078178-1 gnd Energieerzeugung (DE-588)4070813-5 gnd Bioenergieerzeugung (DE-588)4145597-6 gnd Biokonversion (DE-588)4145610-5 gnd |
subject_GND | (DE-588)4006877-8 (DE-588)4145596-4 (DE-588)4145658-0 (DE-588)4069941-9 (DE-588)4069491-4 (DE-588)4068598-6 (DE-588)4078178-1 (DE-588)4070813-5 (DE-588)4145597-6 (DE-588)4145610-5 (DE-588)4143413-4 |
title | Technologies for converting biomass to useful energy combustion, gasification, pyrolysis, torrefaction and fermentation |
title_auth | Technologies for converting biomass to useful energy combustion, gasification, pyrolysis, torrefaction and fermentation |
title_exact_search | Technologies for converting biomass to useful energy combustion, gasification, pyrolysis, torrefaction and fermentation |
title_full | Technologies for converting biomass to useful energy combustion, gasification, pyrolysis, torrefaction and fermentation ed.: Erik Dahlquist |
title_fullStr | Technologies for converting biomass to useful energy combustion, gasification, pyrolysis, torrefaction and fermentation ed.: Erik Dahlquist |
title_full_unstemmed | Technologies for converting biomass to useful energy combustion, gasification, pyrolysis, torrefaction and fermentation ed.: Erik Dahlquist |
title_short | Technologies for converting biomass to useful energy |
title_sort | technologies for converting biomass to useful energy combustion gasification pyrolysis torrefaction and fermentation |
title_sub | combustion, gasification, pyrolysis, torrefaction and fermentation |
topic | Biomasse (DE-588)4006877-8 gnd Bioenergie (DE-588)4145596-4 gnd Biokraftstoff (DE-588)4145658-0 gnd Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Biotechnologie (DE-588)4069491-4 gnd Erneuerbare Energien (DE-588)4068598-6 gnd Technische Chemie (DE-588)4078178-1 gnd Energieerzeugung (DE-588)4070813-5 gnd Bioenergieerzeugung (DE-588)4145597-6 gnd Biokonversion (DE-588)4145610-5 gnd |
topic_facet | Biomasse Bioenergie Biokraftstoff Chemische Verfahrenstechnik Biotechnologie Erneuerbare Energien Technische Chemie Energieerzeugung Bioenergieerzeugung Biokonversion Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025961380&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025961380&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV040312835 |
work_keys_str_mv | AT dahlquisterik technologiesforconvertingbiomasstousefulenergycombustiongasificationpyrolysistorrefactionandfermentation |