Classical and multilinear harmonic analysis:
"This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained, and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
|
Schriftenreihe: | Cambridge studies in advanced mathematics
... |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained, and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary, and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form"-- |
ISBN: | 9781107032620 |
Internformat
MARC
LEADER | 00000nam a2200000 ca4500 | ||
---|---|---|---|
001 | BV040934309 | ||
003 | DE-604 | ||
005 | 20160804 | ||
007 | t | ||
008 | 130409nuuuuuuuu |||| 00||| eng d | ||
020 | |a 9781107032620 |9 978-1-10-703262-0 | ||
035 | |a (DE-599)GBV722098456 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
084 | |a MAT 440f |2 stub | ||
084 | |a 42-01 |2 msc | ||
100 | 1 | |a Muscalu, Camil |e Verfasser |0 (DE-588)1032211830 |4 aut | |
245 | 1 | 0 | |a Classical and multilinear harmonic analysis |c Camil Muscalu ; Wilhelm Schlag |
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press | |
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cambridge studies in advanced mathematics |v ... | |
520 | 1 | |a "This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained, and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary, and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form"-- | |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Schlag, Wilhelm |d 1969- |e Verfasser |0 (DE-588)1022462636 |4 aut | |
856 | 4 | |m DE-601 |q pdf/application |u http://www.gbv.de/dms/bowker/toc/9781107031821.pdf |3 Inhaltsverzeichnis | |
999 | |a oai:aleph.bib-bvb.de:BVB01-025913212 |
Datensatz im Suchindex
_version_ | 1804150234398326784 |
---|---|
any_adam_object | |
author | Muscalu, Camil Schlag, Wilhelm 1969- |
author_GND | (DE-588)1032211830 (DE-588)1022462636 |
author_facet | Muscalu, Camil Schlag, Wilhelm 1969- |
author_role | aut aut |
author_sort | Muscalu, Camil |
author_variant | c m cm w s ws |
building | Verbundindex |
bvnumber | BV040934309 |
classification_rvk | SK 450 |
classification_tum | MAT 440f |
ctrlnum | (DE-599)GBV722098456 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02285nam a2200337 ca4500</leader><controlfield tag="001">BV040934309</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160804 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130409nuuuuuuuu |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107032620</subfield><subfield code="9">978-1-10-703262-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV722098456</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 440f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Muscalu, Camil</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1032211830</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical and multilinear harmonic analysis</subfield><subfield code="c">Camil Muscalu ; Wilhelm Schlag</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">...</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained, and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary, and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schlag, Wilhelm</subfield><subfield code="d">1969-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1022462636</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">http://www.gbv.de/dms/bowker/toc/9781107031821.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025913212</subfield></datafield></record></collection> |
id | DE-604.BV040934309 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:35:41Z |
institution | BVB |
isbn | 9781107032620 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025913212 |
open_access_boolean | |
publishDateSort | 0000 |
publisher | Cambridge Univ. Press |
record_format | marc |
series2 | Cambridge studies in advanced mathematics |
spelling | Muscalu, Camil Verfasser (DE-588)1032211830 aut Classical and multilinear harmonic analysis Camil Muscalu ; Wilhelm Schlag Cambridge [u.a.] Cambridge Univ. Press txt rdacontent n rdamedia nc rdacarrier Cambridge studies in advanced mathematics ... "This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained, and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary, and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form"-- Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 s DE-604 Schlag, Wilhelm 1969- Verfasser (DE-588)1022462636 aut DE-601 pdf/application http://www.gbv.de/dms/bowker/toc/9781107031821.pdf Inhaltsverzeichnis |
spellingShingle | Muscalu, Camil Schlag, Wilhelm 1969- Classical and multilinear harmonic analysis Harmonische Analyse (DE-588)4023453-8 gnd |
subject_GND | (DE-588)4023453-8 |
title | Classical and multilinear harmonic analysis |
title_auth | Classical and multilinear harmonic analysis |
title_exact_search | Classical and multilinear harmonic analysis |
title_full | Classical and multilinear harmonic analysis Camil Muscalu ; Wilhelm Schlag |
title_fullStr | Classical and multilinear harmonic analysis Camil Muscalu ; Wilhelm Schlag |
title_full_unstemmed | Classical and multilinear harmonic analysis Camil Muscalu ; Wilhelm Schlag |
title_short | Classical and multilinear harmonic analysis |
title_sort | classical and multilinear harmonic analysis |
topic | Harmonische Analyse (DE-588)4023453-8 gnd |
topic_facet | Harmonische Analyse |
url | http://www.gbv.de/dms/bowker/toc/9781107031821.pdf |
work_keys_str_mv | AT muscalucamil classicalandmultilinearharmonicanalysis AT schlagwilhelm classicalandmultilinearharmonicanalysis |