The water waves problem: mathematical analysis and asymptotics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2013]
|
Schriftenreihe: | Mathematical surveys and monographs
Volume 188 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xx, 321 Seiten Illustrationen, Diagramme |
ISBN: | 9780821894705 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV040921627 | ||
003 | DE-604 | ||
005 | 20230824 | ||
007 | t | ||
008 | 130402s2013 xxua||| |||| 00||| eng d | ||
010 | |a 2012046540 | ||
020 | |a 9780821894705 |c alk. paper |9 978-0-8218-9470-5 | ||
035 | |a (OCoLC)852625797 | ||
035 | |a (DE-599)BVBBV040921627 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-91G |a DE-384 |a DE-11 | ||
050 | 0 | |a TC172 | |
082 | 0 | |a 551.46/301515 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a PHY 226f |2 stub | ||
084 | |a MAT 357f |2 stub | ||
100 | 1 | |a Lannes, David |d 1973- |e Verfasser |0 (DE-588)1037854128 |4 aut | |
245 | 1 | 0 | |a The water waves problem |b mathematical analysis and asymptotics |c David Lannes |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2013] | |
264 | 4 | |c © 2013 | |
300 | |a xx, 321 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematical surveys and monographs |v Volume 188 | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Water waves |x Mathematical models | |
650 | 4 | |a Hydrodynamics |x Mathematical models | |
650 | 0 | 7 | |a Wasserwelle |0 (DE-588)4136091-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wasserwelle |0 (DE-588)4136091-6 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4704-0948-7 |
830 | 0 | |a Mathematical surveys and monographs |v Volume 188 |w (DE-604)BV000018014 |9 188 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025900771&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025900771 |
Datensatz im Suchindex
_version_ | 1804150216843067393 |
---|---|
adam_text | Titel: The water waves problem
Autor: Lannes, David
Jahr: 2013
Contents
Preface
Index of notations
General notations
Matrices and vectors
Variables and Standard Operators
Xlll
xvii
xvii
xvii
xvii
Parameter depending quantities xviii
Functional Spaces
Functional Spaces on Rd
Functional spaces on a domain Cl C Kd+1
xix
xix
xix
Chapter 1. The Water Waves Problem and Its Asymptotic Regimes 1
1.1. Mathematical formulation 1
1.1.1. Basic assumptions 1
1.1.2. The free surface Euler equations 2
1.1.3. The free surface Bernoulli equations 3
1.1.4. The Zakharov/Craig-Sulem formulation 4
1.2. Other formulations of the water waves problem 5
1.2.1. Lagrangian parametrizations of the free surface 5
1.2.1.1. Nalimov s formulation in dimension d = 1 6
1.2.1.2. Wu s formulation 7
1.2.2. Other interface par ametrizations and extension to two-fiuids
interfaces 8
1.2.3. Variational formulations 10
1.2.3.1. The geometric approach 11
1.2.3.2. Luke s variational formulation 12
1.2.4. Free surface Euler equations in Lagrangian formulation 12
1.3. The nondimensionalized equations 13
1.3.1. Dimensionless parameters 13
1.3.2. Linear wave theory 14
1.3.3. Nondimensionalization of the variables and unknowns 16
1.3.4. Nondimensionalization of the equations 18
1.4. Plane waves, waves packets, and modulation equations 20
1.5. Asymptotic regimes 23
1.6. Extension to moving bottoms 25
1.7. Extension to rough bottoms 27
1.7.1. Nonsmooth topographies 27
1.7.2. Rapidly varying topographies 29
1.8. Supplementary remarks 30
1.8.1. Discussion on the basic assumptions 30
vi CONTENTS
1.8.2. Related frameworks 33
Chapter 2. The Laplace Equation 37
2.1. The Laplace equation in the fluid domain 38
2.1.1. The equation 38
2.1.2. Functional setting and variational Solutions 39
2.1.3. Existence and uniqueness of a variational Solution 41
2.2. The transformed Laplace equation 42
2.2.1. Notations and new functional spaces 42
2.2.2. Choice of a diffeomorphism 43
2.2.3. Transformed equation 46
2.2.4. Variational Solutions for data in H1/2(Rd) 48
2.3. Regularity estimates 50
2.4. Strong Solutions to the Laplace equation 55
2.5. Supplementary remarks 56
2.5.1. Choice of the diffeomorphism 56
2.5.2. Nonasymptotically flat bottom and surface parametrizations 56
2.5.3. Rough bottoms 57
2.5.4. Infinite depth 58
2.5.5. Nonhomogeneous Neumann conditions at the bottom 60
2.5.6. Analyticity 60
Chapter 3. The Dirichlet-Neumann Operator 61
3.1. Definition and basic properties 62
3.1.1. Definition 62
3.1.2. Basic properties 64
3.2. Higher order estimates 67
3.3. Shape derivatives 70
3.4. Commutator estimates 76
3.5. The Dirichlet-Neumann Operator and the vertically averaged velocity 78
3.6. Asymptotic expansions 79
3.6.1. Asymptotic expansion in shallow-water (ß g; 1) 79
3.6.2. Asymptotic expansion for small amplitude waves (e C 1) 84
3.7. Supplementary remarks 85
3.7.1. Nonasymptotically flat bottom and surface parametrizations 85
3.7.2. Rough bottoms 85
3.7.3. Infinite depth 86
3.7.4. Small amplitude expansions for nonflat bottoms 89
3.7.5. Self-adjointness 89
3.7.6. Invertibility 89
3.7.7. Symbolic analysis 89
3.7.8. The Neumann-Neumann, Dirichlet-Dirichlet, and Neumann-Dirichlet
Operators 89
Chapter 4. Well-posedness of the Water Waves Equations 91
4.1. Linearization around the rest State and energy norm 92
4.2. Quasilinearization of the water waves equations 93
4.2.1. Notations and preliminary results 93
4.2.2. A linearization formula 93
CONTENTS vii
4.2.3. The quasilinear System 97
4.3. Main results 101
4.3.1. Initial condition 101
4.3.2. Statement of the theorems 102
4.3.3. Asymptotic regimes 103
4.3.4. Proof of Theorems 4.16 and 4.18 104
4.3.4.1. The mollified quasilinear System 104
4.3.4.2. Symmetrizer and energy 105
4.3.4.3. Energy estimates 106
4.3.4.4. Construction of a Solution 109
4.3.4.5. Uniqueness and stability 112
4.3.5. The Rayleigh-Taylor criterion 112
4.3.5.1. Reformulation of the equations 113
4.3.5.2. Comments on the Rayleigh-Taylor criterion (4.56) 113
4.4. Supplementary remarks 115
4.4.1. Nonasymptotically flat bottom and surface parametrizations 115
4.4.2. Rough bottoms 117
4.4.3. Very deep water (ß » 1) and infinite depth 118
4.4.4. Global well-posedness 119
4.4.5. Low regularity 120
Chapter 5. Shallow Water Asymptotics: Systems. Part 1: Derivation 121
5.1. Derivation of shallow water modeis (ß C 1) 122
5.1.1. Large amplitude modeis (/j«1 and e = O(l), ß = O(l)) 123
5.1.1.1. The Nonlinear Shallow Water (NSW) equations 123
5.1.1.2. The Green-Naghdi (GN) equations 125
5.1.2. Medium amplitude modeis (/i l and e = O(^fß)) 128
5.1.2.1. Large amplitude topography variations: ß = 0(1) 128
5.1.2.2. Medium amplitude topography variations: ß = O(^fß) 128
5.1.2.3. Small amplitude topography variations: ß = O(ß) 128
5.1.3. Small amplitude modeis (/j 1 and e - O(ß)) 129
5.1.3.1. Large amplitude topography variations: ß - 0(1) 129
5.1.3.2. Small amplitude topography variations: ß = 0(ß) 129
5.2. Improving the frequency dispersion of shallow water modeis 131
5.2.1. Boussinesq equations with improved frequency dispersion 132
5.2.1.1. A first family of Boussinesq-Peregrine Systems with improved
frequency dispersion 132
5.2.1.2. A second family of Boussinesq-Peregrine Systems with improved
frequency dispersion 134
5.2.1.3. Simplifications for the case of flat or almost flat bottoms 137
5.2.2. Green-Naghdi equations with improved frequency dispersion 139
5.2.2.1. A first family of Green-Naghdi equations with improved frequency
dispersion 139
5.2.2.2. A second family of Green-Naghdi equations with improved
frequency dispersion 140
5.2.3. The physical relevance of improving the frequency dispersion 140
5.3. Improving the mathematical properties of shallow water modeis 141
5.4. Moving bottoms 143
5.4.1. The Nonlinear Shallow Water equations with moving bottom 144
viii CONTENTS
5.4.2. The Green-Naghdi equations with moving bottom 145
5.4.3. A Boussinesq System with moving bottom. 145
5.5. Reconstruction of the surface elevation from pressure measurements 146
5.5.1. Hydrostatic reconstruction 147
5.5.2. Nonhydrostatic, weakly nonlinear reconstruction 148
5.6. Supplementary remarks 149
5.6.1. Technical results 149
5.6.1.1. Invertibility properties of hb(I + ßTb) 149
5.6.1.2. Invertibility properties of h(I + ßT) 151
5.6.2. Remarks on the velocity unknown used in asymptotic
modeis 151
5.6.2.1. Relationship between the averaged velocity V and the velocity at
an arbitrary elevation 151
5.6.2.2. Relationship between Ve,s and the velocity at an arbitrary
elevation 153
5.6.2.3. Recovery of the vertical velocity from £ and V 153
5.6.3. Formulation in (h, hV) variables of shallow water modeis 153
5.6.3.1. The Nonlinear Shallow Water equations 153
5.6.3.2. The Green-Naghdi equations 154
5.6.4. Equations with dimensions 154
5.6.5. The lake and great lake equations 154
5.6.5.1. The lake equations 154
5.6.5.2. The great lake equations 155
5.6.6. Bottom friction 156
Chapter 6. Shallow Water Asymptotics: Systems. Part 2: Justification 157
6.1. Mathematical analysis of some shallow water modeis 157
6.1.1. The Nonlinear Shallow Water equations 157
6.1.2. The Green-Naghdi equations 161
6.1.3. The Fülly Symmetrie Boussinesq Systems 164
6.2. Füll justification (convergence) of shallow water modeis 165
6.2.1. Füll justification of the Nonlinear Shallow Water equations 165
6.2.2. Füll justification of the Green-Naghdi equations 167
6.2.3. Füll justification of the Fully Symmetrie Boussinesq equations 168
6.2.4. (Almost) füll justification of other shallow water Systems 169
6.3. Supplementary remarks 172
6.3.1. Energy conservation 172
6.3.1.1. Nonlinear Shallow Water equations 172
6.3.1.2. Boussinesq Systems 172
6.3.1.3. Green-Naghdi equations 173
6.3.2. Hamiltonian structure 174
Chapter 7. Shallow Water Asymptotics: Scalar Equations 177
7.1. The Splitting into unidirectional waves in one dimension 178
7.1.1. The Korteweg-de Vries equation 178
7.1.2. Statement of the main result 179
7.1.3. BKW expansion 181
7.1.4. Consistency of the approximate Solution and secular growth 182
7.1.5. Proof of Theorem 7.1 and Corollary 7.2 185
CONTENTS ix
7.1.6. An improvement 186
7.2. The Splitting into unidirectional waves: The weakly transverse case 188
7.2.1. Statement of the main result 190
7.2.2. BKW expansion 191
7.2.3. Consistency of the approximate Solution and secular growth 193
7.2.4. Proof of Theorem 7.16 196
7.3. A direct study of unidirectional waves in one dimension 196
7.3.1. The Camassa-Holm regime 197
7.3.1.1. Approximations based on the velocity 197
7.3.1.2. Equations on the surface elevation 199
7.3.1.3. Proof of Theorem 7.24 200
7.3.1.4. The Camassa-Holm and Degasperis-Procesi equations 202
7.3.2. The long-wave regime and the KdV and BBM equations 204
7.3.3. The fully nonlinear regime 205
7.4. Supplementary remarks 206
7.4.1. Historical remarks on the KDV equation 206
7.4.2. Large time well-posedness of (7.47) and (7.51) 208
7.4.3. The case of nonflat bottoms 211
7.4.3.1. Generalization of the KdV equation for nonflat bottoms 211
7.4.3.2. Generalization of the CH/DP equations for nonflat bottoms 211
7.4.4. Wave breaking 212
7.4.5. Füll dispersion versions of the scalar shallow water approximations 213
7.4.5.1. One dimensional modeis 213
7.4.5.2. The weakly transverse case 214
Chapter 8. Deep Water Models and Modulation Equations 217
8.1. A deep water (or full-dispersion) model 218
8.1.1. Derivation 219
8.1.2. Consistency ofthe deep water (or full-dispersion) model 219
8.1.3. Almost füll justification of the asymptotics 222
8.1.4. The case of infinite depth 223
8.2. Modulation equations in finite depth 223
8.2.1. Defining the ansatz 224
8.2.2. Small amplitude expansion of (8.11) 225
8.2.3. Determination of the ansatz 228
8.2.4. The full-dispersion Benney-Roskes model 231
8.2.5. The Standard Benney-Roskes model 232
8.2.6. The Davey-Stewartson model (dimension d = 2) 234
8.2.7. The nonlinear Schrödinger equation (dimension d - 1) 237
8.3. Modulation equations in infinite depth 238
8.3.1. The ansatz 239
8.3.2. The nonlinear Schrödinger equation (dimension d = 1 or 2) 239
8.4. Justification of the modulation equations 240
8.5. Supplementary remarks 241
8.5.1. Benjamin-Feir instability of periodic wave-trains 241
8.5.2. Full-dispersion Davey-Stewartson and Schrödinger equations 243
8.5.3. The nonlinear Schrödinger approximation with improved dispersion 244
8.5.4. Higher order approximation: The Dysthe equation 246
8.5.5. The NLS approximation in the neighborhood of K H0 = 1.363 247
x CONTENTS
8.5.6. Modulation equations for capillary gravity waves 247
Chapter 9. Water Waves with Surface Tension 249
9.1. Well-posedness of the water waves equations with surface tension 249
9.1.1. The equations 249
9.1.2. Physical relevance 250
9.1.3. Linearization around the rest state and energy norm 251
9.1.4. A linearization formula 252
9.1.5. The quasilinear system 254
9.1.6. Initial condition 255
9.1.7. Well-posedness of the water waves equations with surface tension 255
9.2. Shallow water modeis (systems) with surface tension 258
9.2.1. Large amplitude modeis 259
9.2.2. Small amplitude modeis 259
9.3. Asymptotic modeis: Scalar equations 261
9.3.1. Capillary effects and the KdV approximation 261
9.3.2. The Kawahara approximation 262
9.3.3. Capillary effects and the KP approximation 263
9.3.4. The weakly transverse Kawahara approximation 264
9.4. Asymptotic modeis: Deep and infinite water 265
9.5. Modulation equations 265
Appendix A. More on the Dirichlet-Neumann Operator 267
A.l. Shape analyticity of the Dirichlet-Neumann Operator 267
A.l.l. Shape analyticity of the velocity potential 267
A.1.2. Shape analyticity of the Dirichlet-Neumann Operator 272
A.l.2.1. The case of finite depth 272
A.l.2.2. The case of infinite depth 274
A.2. Self-Adjointness of the Dirichlet-Neumann Operator 274
A.3. Invertibility of the Dirichlet-Neumann Operator 275
A.4. Remarks on the symbolic analysis of the Dirichlet-Neumann
Operator 277
A.5. Related Operators 278
A.5.1. The Laplace equation with nonhomogeneous Neumann condition at
the bottom 278
A.5.2. The Neumann-Neumann, Dirichlet-Dirichlet, and Neumann-
Dirichlet Operators 280
A.5.3. A generalized shape derivative formula 280
A.5.4. Asymptotic expansion of the Neumann-Neumann Operator 281
A.5.5. Asymptotic expansion of the averaged velocity 281
Appendix B. Product and Commutator Estimates 283
B.l. Product estimates 283
B.l.l. Product estimates for functions defined on Rd 283
B.l.2. Product estimates for functions defined on the flat strip S 285
B.2. Commutator estimates 286
B.2.1. Commutator estimates for functions defined in Rd 286
B.2.2. Commutator estimates for functions defined on S 291
B.3. Product and commutator with Ck functions 291
CONTENTS xi
B.4. Product and commutator in uniformly local Sobolev Spaces 293
B.4.1. Uniformly local Sobolev Spaces 293
B.4.2. Product estimates 294
B.4.3. Commutator estimates 295
Appendix C. Asymptotic Models: A Reader s Digest 297
C.l. What is a fully justified asymptotic model? 297
C.2. Shallow water modeis 298
C.2.1. Low precision modeis 298
C.2.2. High precision modeis 298
C.2.3. Approximation by scalar equations 299
C.3. Deep water and infinite depth modeis 300
C.4. Modulation equations 300
C.4.1. Modulation equations in finite depth 300
C.4.2. Modulation equations in infinite depth 302
C.5. Influence of surface tension 302
C.5.1. On shallow water modeis 302
C.5.2. On deep water modeis and modulation equations 303
Bibliography 305
Index 319
|
any_adam_object | 1 |
author | Lannes, David 1973- |
author_GND | (DE-588)1037854128 |
author_facet | Lannes, David 1973- |
author_role | aut |
author_sort | Lannes, David 1973- |
author_variant | d l dl |
building | Verbundindex |
bvnumber | BV040921627 |
callnumber-first | T - Technology |
callnumber-label | TC172 |
callnumber-raw | TC172 |
callnumber-search | TC172 |
callnumber-sort | TC 3172 |
callnumber-subject | TC - Hydraulic and Ocean Engineering |
classification_rvk | SK 950 |
classification_tum | PHY 226f MAT 357f |
ctrlnum | (OCoLC)852625797 (DE-599)BVBBV040921627 |
dewey-full | 551.46/301515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 551 - Geology, hydrology, meteorology |
dewey-raw | 551.46/301515 |
dewey-search | 551.46/301515 |
dewey-sort | 3551.46 6301515 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01949nam a2200493 cb4500</leader><controlfield tag="001">BV040921627</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230824 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130402s2013 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2012046540</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821894705</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-8218-9470-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852625797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040921627</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC172</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.46/301515</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 226f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 357f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lannes, David</subfield><subfield code="d">1973-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1037854128</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The water waves problem</subfield><subfield code="b">mathematical analysis and asymptotics</subfield><subfield code="c">David Lannes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xx, 321 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">Volume 188</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water waves</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrodynamics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wasserwelle</subfield><subfield code="0">(DE-588)4136091-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wasserwelle</subfield><subfield code="0">(DE-588)4136091-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-0948-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">Volume 188</subfield><subfield code="w">(DE-604)BV000018014</subfield><subfield code="9">188</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025900771&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025900771</subfield></datafield></record></collection> |
id | DE-604.BV040921627 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:35:24Z |
institution | BVB |
isbn | 9780821894705 |
language | English |
lccn | 2012046540 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025900771 |
oclc_num | 852625797 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-384 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-384 DE-11 |
physical | xx, 321 Seiten Illustrationen, Diagramme |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | American Mathematical Society |
record_format | marc |
series | Mathematical surveys and monographs |
series2 | Mathematical surveys and monographs |
spelling | Lannes, David 1973- Verfasser (DE-588)1037854128 aut The water waves problem mathematical analysis and asymptotics David Lannes Providence, Rhode Island American Mathematical Society [2013] © 2013 xx, 321 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Mathematical surveys and monographs Volume 188 Mathematisches Modell Water waves Mathematical models Hydrodynamics Mathematical models Wasserwelle (DE-588)4136091-6 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Wasserwelle (DE-588)4136091-6 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Erscheint auch als Online-Ausgabe 978-1-4704-0948-7 Mathematical surveys and monographs Volume 188 (DE-604)BV000018014 188 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025900771&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lannes, David 1973- The water waves problem mathematical analysis and asymptotics Mathematical surveys and monographs Mathematisches Modell Water waves Mathematical models Hydrodynamics Mathematical models Wasserwelle (DE-588)4136091-6 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)4136091-6 (DE-588)4114528-8 |
title | The water waves problem mathematical analysis and asymptotics |
title_auth | The water waves problem mathematical analysis and asymptotics |
title_exact_search | The water waves problem mathematical analysis and asymptotics |
title_full | The water waves problem mathematical analysis and asymptotics David Lannes |
title_fullStr | The water waves problem mathematical analysis and asymptotics David Lannes |
title_full_unstemmed | The water waves problem mathematical analysis and asymptotics David Lannes |
title_short | The water waves problem |
title_sort | the water waves problem mathematical analysis and asymptotics |
title_sub | mathematical analysis and asymptotics |
topic | Mathematisches Modell Water waves Mathematical models Hydrodynamics Mathematical models Wasserwelle (DE-588)4136091-6 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Mathematisches Modell Water waves Mathematical models Hydrodynamics Mathematical models Wasserwelle |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025900771&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000018014 |
work_keys_str_mv | AT lannesdavid thewaterwavesproblemmathematicalanalysisandasymptotics |