Computational contact mechanics: geometrically exact theory for arbitrary shaped bodies
<p>This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2013
|
Schriftenreihe: | Lecture notes in applied and computational mechanics
67 |
Schlagworte: | |
Online-Zugang: | TUM01 Volltext Inhaltsverzeichnis Abstract |
Zusammenfassung: | <p>This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation.</p><p>The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics. </p> |
Beschreibung: | Differential Geometry of Surfaces and Curves -- Closest Point Projection Procedure and Corresponding Curvilinear Coordinate System -- Geometry and Kinematics of Contact -- Weak Formulation of Contact Conditions -- Contact Constraints and Constitutive Equations for Contact Tractions -- Linearization of the Weak Forms – Tangent Matrices in a Covariant Form -- Surface-To-Surface Contact – Various Aspects for Implementations -- Special Case of Implementation – Reduction into 2D Case -- Implementation of Contact Algorithms with High Order FE -- Anisotropic Adhesion-Friction Models – Implementation -- Experimental Validations of the Coupled Anistropi -- Various Aspects of Implementation of the Curve-To-Curve Contact Model -- 3D-Generalization of the Euler-Eytelwein Formula Considering Pitch |
Beschreibung: | 1 Online-Ressource (XXII, 446 p. 280 illus) |
ISBN: | 9783642315312 |
DOI: | 10.1007/978-3-642-31531-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV040896315 | ||
003 | DE-604 | ||
005 | 20181031 | ||
007 | cr|uuu---uuuuu | ||
008 | 130319s2013 |||| o||u| ||||||eng d | ||
020 | |a 9783642315312 |c Online |9 978-3-642-31531-2 | ||
024 | 7 | |a 10.1007/978-3-642-31531-2 |2 doi | |
035 | |a (OCoLC)820469139 | ||
035 | |a (DE-599)BVBBV040896315 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-898 |a DE-634 |a DE-573 |a DE-92 |a DE-Aug4 |a DE-859 |a DE-91 |a DE-706 |a DE-863 | ||
082 | 0 | |a 620.1 | |
084 | |a UF 2000 |0 (DE-625)145568: |2 rvk | ||
084 | |a MTA 010f |2 stub | ||
084 | |a ELT 000 |2 stub | ||
084 | |a MTA 009f |2 stub | ||
084 | |a MAS 000 |2 stub | ||
084 | |a MAS 110f |2 stub | ||
100 | 1 | |a Konyukhov, Alexander |e Verfasser |0 (DE-588)143486306 |4 aut | |
245 | 1 | 0 | |a Computational contact mechanics |b geometrically exact theory for arbitrary shaped bodies |c Alexander Konyukhov and Karl Schweizerhof |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2013 | |
300 | |a 1 Online-Ressource (XXII, 446 p. 280 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in applied and computational mechanics |v 67 | |
500 | |a Differential Geometry of Surfaces and Curves -- Closest Point Projection Procedure and Corresponding Curvilinear Coordinate System -- Geometry and Kinematics of Contact -- Weak Formulation of Contact Conditions -- Contact Constraints and Constitutive Equations for Contact Tractions -- Linearization of the Weak Forms – Tangent Matrices in a Covariant Form -- Surface-To-Surface Contact – Various Aspects for Implementations -- Special Case of Implementation – Reduction into 2D Case -- Implementation of Contact Algorithms with High Order FE -- Anisotropic Adhesion-Friction Models – Implementation -- Experimental Validations of the Coupled Anistropi -- Various Aspects of Implementation of the Curve-To-Curve Contact Model -- 3D-Generalization of the Euler-Eytelwein Formula Considering Pitch | ||
520 | |a <p>This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation.</p><p>The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics. </p> | ||
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Engineering | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Mechanics, applied | |
650 | 4 | |a Materials | |
650 | 0 | 7 | |a Kontaktmechanik |0 (DE-588)4798356-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kontaktmechanik |0 (DE-588)4798356-5 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Schweizerhof, Karl |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-642-31530-5 |
830 | 0 | |a Lecture notes in applied and computational mechanics |v 67 |w (DE-604)BV017110729 |9 67 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-31531-2 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025875871&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025875871&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-ENG |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025875871 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=994520 |l TUM01 |p ZDB-30-PQE |q TUM_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 922765 |
---|---|
_version_ | 1806194901356904448 |
adam_text | COMPUTATIONAL CONTACT MECHANICS
/ KONYUKHOV, ALEXANDER
: 2013
TABLE OF CONTENTS / INHALTSVERZEICHNIS
DIFFERENTIAL GEOMETRY OF SURFACES AND CURVES
CLOSEST POINT PROJECTION PROCEDURE AND CORRESPONDING CURVILINEAR
COORDINATE SYSTEM
GEOMETRY AND KINEMATICS OF CONTACT
WEAK FORMULATION OF CONTACT CONDITIONS
CONTACT CONSTRAINTS AND CONSTITUTIVE EQUATIONS FOR CONTACT TRACTIONS
LINEARIZATION OF THE WEAK FORMS – TANGENT MATRICES IN A COVARIANT FORM
SURFACE-TO-SURFACE CONTACT – VARIOUS ASPECTS FOR IMPLEMENTATIONS
SPECIAL CASE OF IMPLEMENTATION – REDUCTION INTO 2D CASE
IMPLEMENTATION OF CONTACT ALGORITHMS WITH HIGH ORDER FE
ANISOTROPIC ADHESION-FRICTION MODELS – IMPLEMENTATION
EXPERIMENTAL VALIDATIONS OF THE COUPLED ANISTROPI
VARIOUS ASPECTS OF IMPLEMENTATION OF THE CURVE-TO-CURVE CONTACT MODEL
3D-GENERALIZATION OF THE EULER-EYTELWEIN FORMULA CONSIDERING PITCH
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
COMPUTATIONAL CONTACT MECHANICS
/ KONYUKHOV, ALEXANDER
: 2013
ABSTRACT / INHALTSTEXT
THIS BOOK CONTAINS A SYSTEMATICAL ANALYSIS OF GEOMETRICAL SITUATIONS
LEADING TO CONTACT PAIRS
POINT-TO-SURFACE, SURFACE-TO-SURFACE, POINT-TO-CURVE, CURVE-TO-CURVE AND
CURVE-TO-SURFACE. EACH CONTACT PAIR IS INHERITED WITH A SPECIAL
COORDINATE SYSTEM BASED ON ITS GEOMETRICAL PROPERTIES SUCH AS A GAUSSIAN
SURFACE COORDINATE SYSTEM OR A SERRET-FRENET CURVE COORDINATE SYSTEM.
THE FORMULATION IN A COVARIANT FORM ALLOWS IN A STRAIGHTFORWARD FASHION
TO CONSIDER VARIOUS CONSTITUTIVE RELATIONS FOR A CERTAIN PAIR SUCH AS
ANISOTROPY FOR BOTH FRICTIONAL AND STRUCTURAL PARTS. THEN STANDARD
METHODS WELL KNOWN IN COMPUTATIONAL CONTACT MECHANICS SUCH AS PENALTY,
LAGRANGE MULTIPLIER METHODS, COMBINATION OF BOTH AND OTHERS ARE
FORMULATED IN THESE COORDINATE SYSTEMS. SUCH FORMULATIONS REQUIRE THEN
THE POWERFUL APPARATUS OF DIFFERENTIAL GEOMETRY OF SURFACES AND CURVES
AS WELL AS OF CONVEX ANALYSIS. THE FINAL GOALS OF SUCH TRANSFORMATIONS
ARE THEN READY-FOR-IMPLEMENTATION NUMERICAL ALGORITHMS WITHIN THE
FINITE ELEMENT METHOD INCLUDING ANY ARBITRARY DISCRETIZATION TECHNIQUES
SUCH AS HIGH ORDER AND ISOGEOMETRIC FINITE ELEMENTS, WHICH ARE MOST
CONVENIENT FOR THE CONSIDERED GEOMETRICAL SITUATION. THE BOOK PROPOSES A
CONSISTENT STUDY OF GEOMETRY AND KINEMATICS, VARIATIONAL FORMULATIONS,
CONSTITUTIVE RELATIONS FOR SURFACES AND DISCRETIZATION TECHNIQUES FOR
ALL CONSIDERED GEOMETRICAL PAIRS AND CONTAINS THE ASSOCIATED
NUMERICAL ANALYSIS AS WELL AS SOME NEW ANALYTICAL RESULTS IN CONTACT
MECHANICS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Konyukhov, Alexander |
author_GND | (DE-588)143486306 |
author_facet | Konyukhov, Alexander |
author_role | aut |
author_sort | Konyukhov, Alexander |
author_variant | a k ak |
building | Verbundindex |
bvnumber | BV040896315 |
classification_rvk | UF 2000 |
classification_tum | MTA 010f ELT 000 MTA 009f MAS 000 MAS 110f |
collection | ZDB-2-ENG ZDB-30-PQE |
ctrlnum | (OCoLC)820469139 (DE-599)BVBBV040896315 |
dewey-full | 620.1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1 |
dewey-search | 620.1 |
dewey-sort | 3620.1 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik Maschinenbau |
doi_str_mv | 10.1007/978-3-642-31531-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05126nmm a2200613zcb4500</leader><controlfield tag="001">BV040896315</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181031 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130319s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642315312</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-31531-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-31531-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)820469139</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040896315</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-898</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-863</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 2000</subfield><subfield code="0">(DE-625)145568:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 010f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 009f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAS 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAS 110f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Konyukhov, Alexander</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143486306</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational contact mechanics</subfield><subfield code="b">geometrically exact theory for arbitrary shaped bodies</subfield><subfield code="c">Alexander Konyukhov and Karl Schweizerhof</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 446 p. 280 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in applied and computational mechanics</subfield><subfield code="v">67</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Differential Geometry of Surfaces and Curves -- Closest Point Projection Procedure and Corresponding Curvilinear Coordinate System -- Geometry and Kinematics of Contact -- Weak Formulation of Contact Conditions -- Contact Constraints and Constitutive Equations for Contact Tractions -- Linearization of the Weak Forms – Tangent Matrices in a Covariant Form -- Surface-To-Surface Contact – Various Aspects for Implementations -- Special Case of Implementation – Reduction into 2D Case -- Implementation of Contact Algorithms with High Order FE -- Anisotropic Adhesion-Friction Models – Implementation -- Experimental Validations of the Coupled Anistropi -- Various Aspects of Implementation of the Curve-To-Curve Contact Model -- 3D-Generalization of the Euler-Eytelwein Formula Considering Pitch</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p>This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation.</p><p>The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics. </p></subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, applied</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontaktmechanik</subfield><subfield code="0">(DE-588)4798356-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kontaktmechanik</subfield><subfield code="0">(DE-588)4798356-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schweizerhof, Karl</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-642-31530-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in applied and computational mechanics</subfield><subfield code="v">67</subfield><subfield code="w">(DE-604)BV017110729</subfield><subfield code="9">67</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-31531-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025875871&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025875871&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025875871</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=994520</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040896315 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T16:14:46Z |
institution | BVB |
isbn | 9783642315312 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025875871 |
oclc_num | 820469139 |
open_access_boolean | |
owner | DE-898 DE-BY-UBR DE-634 DE-573 DE-92 DE-Aug4 DE-859 DE-91 DE-BY-TUM DE-706 DE-863 DE-BY-FWS |
owner_facet | DE-898 DE-BY-UBR DE-634 DE-573 DE-92 DE-Aug4 DE-859 DE-91 DE-BY-TUM DE-706 DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (XXII, 446 p. 280 illus) |
psigel | ZDB-2-ENG ZDB-30-PQE ZDB-30-PQE TUM_Einzelkauf |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer |
record_format | marc |
series | Lecture notes in applied and computational mechanics |
series2 | Lecture notes in applied and computational mechanics |
spellingShingle | Konyukhov, Alexander Computational contact mechanics geometrically exact theory for arbitrary shaped bodies Lecture notes in applied and computational mechanics Ingenieurwissenschaften Engineering Mechanics Mechanics, applied Materials Kontaktmechanik (DE-588)4798356-5 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4798356-5 (DE-588)4128130-5 |
title | Computational contact mechanics geometrically exact theory for arbitrary shaped bodies |
title_auth | Computational contact mechanics geometrically exact theory for arbitrary shaped bodies |
title_exact_search | Computational contact mechanics geometrically exact theory for arbitrary shaped bodies |
title_full | Computational contact mechanics geometrically exact theory for arbitrary shaped bodies Alexander Konyukhov and Karl Schweizerhof |
title_fullStr | Computational contact mechanics geometrically exact theory for arbitrary shaped bodies Alexander Konyukhov and Karl Schweizerhof |
title_full_unstemmed | Computational contact mechanics geometrically exact theory for arbitrary shaped bodies Alexander Konyukhov and Karl Schweizerhof |
title_short | Computational contact mechanics |
title_sort | computational contact mechanics geometrically exact theory for arbitrary shaped bodies |
title_sub | geometrically exact theory for arbitrary shaped bodies |
topic | Ingenieurwissenschaften Engineering Mechanics Mechanics, applied Materials Kontaktmechanik (DE-588)4798356-5 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Ingenieurwissenschaften Engineering Mechanics Mechanics, applied Materials Kontaktmechanik Numerisches Verfahren |
url | https://doi.org/10.1007/978-3-642-31531-2 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025875871&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025875871&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV017110729 |
work_keys_str_mv | AT konyukhovalexander computationalcontactmechanicsgeometricallyexacttheoryforarbitraryshapedbodies AT schweizerhofkarl computationalcontactmechanicsgeometricallyexacttheoryforarbitraryshapedbodies |