On statistical pattern recognition in independent component analysis mixture modelling:
<p>A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2013
|
Schriftenreihe: | Springer theses : Recognizing outstanding Ph. D. Research
|
Schlagworte: | |
Online-Zugang: | BTU01 FHA01 FHI01 FHN01 FHR01 FKE01 FWS01 UBY01 Volltext |
Zusammenfassung: | <p>A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of the most successful techniques for non-linear processing of data with complex non-Gaussian distributions is the independent component analysis mixture modelling (ICAMM). This thesis defines a novel formalism for pattern recognition and classification based on ICAMM, which unifies a certain number of pattern recognition tasks allowing generalization. The versatile and powerful framework developed in this work can deal with data obtained from quite different areas, such as image processing, impact-echo testing, cultural heritage, hypnograms analysis, web-mining and might therefore be employed to solve many different real-world problems.</p> |
Beschreibung: | Introduction -- <p>ICA and ICAMM Methods -- <p>Learning Mixtures of Independent Component Analysers -- <p>Hierarchical Clustering from ICA Mixtures -- <p>Application of ICAMM to Impact-Echo Testing -- <p>Cultural Heritage Applications: Archaeological Ceramics and Building Restoration -- <p>Other Applications: Sequential Dependence Modelling and Data Mining -- <p>Conclusions.</p></p><p></p><p></p><p></p><p></p><p></p><p> |
Beschreibung: | 1 Online-Ressource (XXII, 185 p. 73 illus) |
ISBN: | 9783642307522 |
DOI: | 10.1007/978-3-642-30752-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV040888804 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 130315s2013 |||| o||u| ||||||eng d | ||
020 | |a 9783642307522 |c Online |9 978-3-642-30752-2 | ||
024 | 7 | |a 10.1007/978-3-642-30752-2 |2 doi | |
035 | |a (OCoLC)812578856 | ||
035 | |a (DE-599)BVBBV040888804 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-898 |a DE-634 |a DE-573 |a DE-92 |a DE-Aug4 |a DE-859 |a DE-706 |a DE-863 | ||
082 | 0 | |a 620 | |
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
100 | 1 | |a Salazar, Addisson |e Verfasser |4 aut | |
245 | 1 | 0 | |a On statistical pattern recognition in independent component analysis mixture modelling |c Addisson Salazar |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2013 | |
300 | |a 1 Online-Ressource (XXII, 185 p. 73 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer theses : Recognizing outstanding Ph. D. Research | |
500 | |a Introduction -- <p>ICA and ICAMM Methods -- <p>Learning Mixtures of Independent Component Analysers -- <p>Hierarchical Clustering from ICA Mixtures -- <p>Application of ICAMM to Impact-Echo Testing -- <p>Cultural Heritage Applications: Archaeological Ceramics and Building Restoration -- <p>Other Applications: Sequential Dependence Modelling and Data Mining -- <p>Conclusions.</p></p><p></p><p></p><p></p><p></p><p></p><p> | ||
502 | |a Zugl.: Valencia, Polytechnic Univ., Diss. | ||
520 | |a <p>A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of the most successful techniques for non-linear processing of data with complex non-Gaussian distributions is the independent component analysis mixture modelling (ICAMM). This thesis defines a novel formalism for pattern recognition and classification based on ICAMM, which unifies a certain number of pattern recognition tasks allowing generalization. The versatile and powerful framework developed in this work can deal with data obtained from quite different areas, such as image processing, impact-echo testing, cultural heritage, hypnograms analysis, web-mining and might therefore be employed to solve many different real-world problems.</p> | ||
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Engineering | |
650 | 4 | |a Optical pattern recognition | |
650 | 4 | |a Physics | |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unabhängige Komponentenanalyse |0 (DE-588)4812492-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | 1 | |a Unabhängige Komponentenanalyse |0 (DE-588)4812492-8 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-642-30751-5 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-30752-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-ENG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025868495 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-30752-2 |l BTU01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-30752-2 |l FHA01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-30752-2 |l FHI01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-30752-2 |l FHN01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-30752-2 |l FHR01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-30752-2 |l FKE01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-30752-2 |l FWS01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-30752-2 |l UBY01 |p ZDB-2-ENG |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 923196 |
---|---|
_version_ | 1806194905544916992 |
any_adam_object | |
author | Salazar, Addisson |
author_facet | Salazar, Addisson |
author_role | aut |
author_sort | Salazar, Addisson |
author_variant | a s as |
building | Verbundindex |
bvnumber | BV040888804 |
classification_rvk | ST 330 |
collection | ZDB-2-ENG |
ctrlnum | (OCoLC)812578856 (DE-599)BVBBV040888804 |
dewey-full | 620 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620 |
dewey-search | 620 |
dewey-sort | 3620 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik |
doi_str_mv | 10.1007/978-3-642-30752-2 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03951nmm a2200601zc 4500</leader><controlfield tag="001">BV040888804</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130315s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642307522</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-30752-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-30752-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)812578856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040888804</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-898</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-863</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Salazar, Addisson</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On statistical pattern recognition in independent component analysis mixture modelling</subfield><subfield code="c">Addisson Salazar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 185 p. 73 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer theses : Recognizing outstanding Ph. D. Research</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction -- <p>ICA and ICAMM Methods -- <p>Learning Mixtures of Independent Component Analysers -- <p>Hierarchical Clustering from ICA Mixtures -- <p>Application of ICAMM to Impact-Echo Testing -- <p>Cultural Heritage Applications: Archaeological Ceramics and Building Restoration -- <p>Other Applications: Sequential Dependence Modelling and Data Mining -- <p>Conclusions.</p></p><p></p><p></p><p></p><p></p><p></p><p></subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Zugl.: Valencia, Polytechnic Univ., Diss.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p>A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of the most successful techniques for non-linear processing of data with complex non-Gaussian distributions is the independent component analysis mixture modelling (ICAMM). This thesis defines a novel formalism for pattern recognition and classification based on ICAMM, which unifies a certain number of pattern recognition tasks allowing generalization. The versatile and powerful framework developed in this work can deal with data obtained from quite different areas, such as image processing, impact-echo testing, cultural heritage, hypnograms analysis, web-mining and might therefore be employed to solve many different real-world problems.</p></subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical pattern recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unabhängige Komponentenanalyse</subfield><subfield code="0">(DE-588)4812492-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unabhängige Komponentenanalyse</subfield><subfield code="0">(DE-588)4812492-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-642-30751-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-30752-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025868495</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-30752-2</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-30752-2</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-30752-2</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-30752-2</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-30752-2</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-30752-2</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-30752-2</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-30752-2</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV040888804 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T16:14:51Z |
institution | BVB |
isbn | 9783642307522 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025868495 |
oclc_num | 812578856 |
open_access_boolean | |
owner | DE-898 DE-BY-UBR DE-634 DE-573 DE-92 DE-Aug4 DE-859 DE-706 DE-863 DE-BY-FWS |
owner_facet | DE-898 DE-BY-UBR DE-634 DE-573 DE-92 DE-Aug4 DE-859 DE-706 DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (XXII, 185 p. 73 illus) |
psigel | ZDB-2-ENG |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer |
record_format | marc |
series2 | Springer theses : Recognizing outstanding Ph. D. Research |
spellingShingle | Salazar, Addisson On statistical pattern recognition in independent component analysis mixture modelling Ingenieurwissenschaften Engineering Optical pattern recognition Physics Mustererkennung (DE-588)4040936-3 gnd Unabhängige Komponentenanalyse (DE-588)4812492-8 gnd |
subject_GND | (DE-588)4040936-3 (DE-588)4812492-8 (DE-588)4113937-9 |
title | On statistical pattern recognition in independent component analysis mixture modelling |
title_auth | On statistical pattern recognition in independent component analysis mixture modelling |
title_exact_search | On statistical pattern recognition in independent component analysis mixture modelling |
title_full | On statistical pattern recognition in independent component analysis mixture modelling Addisson Salazar |
title_fullStr | On statistical pattern recognition in independent component analysis mixture modelling Addisson Salazar |
title_full_unstemmed | On statistical pattern recognition in independent component analysis mixture modelling Addisson Salazar |
title_short | On statistical pattern recognition in independent component analysis mixture modelling |
title_sort | on statistical pattern recognition in independent component analysis mixture modelling |
topic | Ingenieurwissenschaften Engineering Optical pattern recognition Physics Mustererkennung (DE-588)4040936-3 gnd Unabhängige Komponentenanalyse (DE-588)4812492-8 gnd |
topic_facet | Ingenieurwissenschaften Engineering Optical pattern recognition Physics Mustererkennung Unabhängige Komponentenanalyse Hochschulschrift |
url | https://doi.org/10.1007/978-3-642-30752-2 |
work_keys_str_mv | AT salazaraddisson onstatisticalpatternrecognitioninindependentcomponentanalysismixturemodelling |