Supervised learning with complex-valued neural networks:
<p>Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural ne...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2013
|
Schriftenreihe: | Studies in computational intelligence
421 |
Schlagworte: | |
Online-Zugang: | BTU01 FHA01 FHI01 FHN01 FHR01 FKE01 FWS01 UBY01 Volltext Inhaltsverzeichnis Abstract |
Zusammenfassung: | <p>Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems.</p> |
Beschreibung: | Introduction -- Fully Complex-valued Multi Layer Perceptron Networks -- Fully Complex-valued Radial Basis Function Networks -- Performance Study on Complex-valued Function Approximation Problems -- Circular Complex-valued Extreme Learning Machine Classifier -- Performance Study on Real-valued Classification Problems -- Complex-valued Self-regulatory Resource Allocation Network -- Conclusions and Scope for FutureWorks (CSRAN) |
Beschreibung: | 1 Online-Ressource (XXII, 170 p. 37 illus) |
ISBN: | 9783642294914 |
DOI: | 10.1007/978-3-642-29491-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV040801551 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 130307s2013 |||| o||u| ||||||eng d | ||
020 | |a 9783642294914 |c Online |9 978-3-642-29491-4 | ||
024 | 7 | |a 10.1007/978-3-642-29491-4 |2 doi | |
035 | |a (OCoLC)820467164 | ||
035 | |a (DE-599)BVBBV040801551 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-898 |a DE-634 |a DE-573 |a DE-92 |a DE-Aug4 |a DE-859 |a DE-706 |a DE-863 | ||
082 | 0 | |a 006.3 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
100 | 1 | |a Suresh, Sundaram |e Verfasser |4 aut | |
245 | 1 | 0 | |a Supervised learning with complex-valued neural networks |c Sundaram Suresh ; Narasimhan Sundararajan ; Ramasamy Savitha |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2013 | |
300 | |a 1 Online-Ressource (XXII, 170 p. 37 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Studies in computational intelligence |v 421 | |
500 | |a Introduction -- Fully Complex-valued Multi Layer Perceptron Networks -- Fully Complex-valued Radial Basis Function Networks -- Performance Study on Complex-valued Function Approximation Problems -- Circular Complex-valued Extreme Learning Machine Classifier -- Performance Study on Real-valued Classification Problems -- Complex-valued Self-regulatory Resource Allocation Network -- Conclusions and Scope for FutureWorks (CSRAN) | ||
520 | |a <p>Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems.</p> | ||
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Engineering | |
650 | 0 | 7 | |a Komplexe Zahl |0 (DE-588)4128698-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Überwachtes Lernen |0 (DE-588)4580264-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Überwachtes Lernen |0 (DE-588)4580264-6 |D s |
689 | 0 | 1 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 2 | |a Komplexe Zahl |0 (DE-588)4128698-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Sundararajan, Narasimhan |e Sonstige |4 oth | |
700 | 1 | |a Savitha, Ramasamy |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-642-29490-7 |
830 | 0 | |a Studies in computational intelligence |v 421 |w (DE-604)BV020822171 |9 421 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-29491-4 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025781650&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025781650&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-ENG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025781650 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-642-29491-4 |l BTU01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-29491-4 |l FHA01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-29491-4 |l FHI01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-29491-4 |l FHN01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-29491-4 |l FHR01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-29491-4 |l FKE01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-29491-4 |l FWS01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-29491-4 |l UBY01 |p ZDB-2-ENG |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 923397 |
---|---|
_version_ | 1806194906056622080 |
adam_text | SUPERVISED LEARNING WITH COMPLEX-VALUED NEURAL NETWORKS
/ SURESH, SUNDARAM
: 2013
TABLE OF CONTENTS / INHALTSVERZEICHNIS
INTRODUCTION
FULLY COMPLEX-VALUED MULTI LAYER PERCEPTRON NETWORKS
FULLY COMPLEX-VALUED RADIAL BASIS FUNCTION NETWORKS
PERFORMANCE STUDY ON COMPLEX-VALUED FUNCTION APPROXIMATION PROBLEMS
CIRCULAR COMPLEX-VALUED EXTREME LEARNING MACHINE CLASSIFIER
PERFORMANCE STUDY ON REAL-VALUED CLASSIFICATION PROBLEMS
COMPLEX-VALUED SELF-REGULATORY RESOURCE ALLOCATION NETWORK
CONCLUSIONS AND SCOPE FOR FUTUREWORKS (CSRAN)
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
SUPERVISED LEARNING WITH COMPLEX-VALUED NEURAL NETWORKS
/ SURESH, SUNDARAM
: 2013
ABSTRACT / INHALTSTEXT
RECENT ADVANCEMENTS IN THE FIELD OF TELECOMMUNICATIONS, MEDICAL IMAGING
AND SIGNAL PROCESSING DEAL WITH SIGNALS THAT ARE INHERENTLY TIME
VARYING, NONLINEAR AND COMPLEX-VALUED. THE TIME VARYING, NONLINEAR
CHARACTERISTICS OF THESE SIGNALS CAN BE EFFECTIVELY ANALYZED USING
ARTIFICIAL NEURAL NETWORKS. FURTHERMORE, TO EFFICIENTLY PRESERVE THE
PHYSICAL CHARACTERISTICS OF THESE COMPLEX-VALUED SIGNALS, IT IS
IMPORTANT TO DEVELOP COMPLEX-VALUED NEURAL NETWORKS AND DERIVE THEIR
LEARNING ALGORITHMS TO REPRESENT THESE SIGNALS AT EVERY STEP OF THE
LEARNING PROCESS. THIS MONOGRAPH COMPRISES A COLLECTION OF NEW
SUPERVISED LEARNING ALGORITHMS ALONG WITH NOVEL ARCHITECTURES FOR
COMPLEX-VALUED NEURAL NETWORKS. THE CONCEPTS OF META-COGNITION EQUIPPED
WITH A SELF-REGULATED LEARNING HAVE BEEN KNOWN TO BE THE BEST HUMAN
LEARNING STRATEGY. IN THIS MONOGRAPH, THE PRINCIPLES OF META-COGNITION
HAVE BEEN INTRODUCED FOR COMPLEX-VALUED NEURAL NETWORKS IN BOTH THE
BATCH AND SEQUENTIAL LEARNING MODES. FOR APPLICATIONS WHERE THE
COMPUTATION TIME OF THE TRAINING PROCESS IS CRITICAL, A FAST LEARNING
COMPLEX-VALUED NEURAL NETWORK CALLED AS A FULLY COMPLEX-VALUED
RELAXATION NETWORK ALONG WITH ITS LEARNING ALGORITHM HAS BEEN PRESENTED.
THE PRESENCE OF ORTHOGONAL DECISION BOUNDARIES HELPS COMPLEX-VALUED
NEURAL NETWORKS TO OUTPERFORM REAL-VALUED NETWORKS IN PERFORMING
CLASSIFICATION TASKS. THIS ASPECT HAS BEEN HIGHLIGHTED. THE PERFORMANCES
OF VARIOUS COMPLEX-VALUED NEURAL NETWORKS ARE EVALUATED ON A SET OF
BENCHMARK AND REAL-WORLD FUNCTION APPROXIMATION AND REAL-VALUED
CLASSIFICATION PROBLEMS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Suresh, Sundaram |
author_facet | Suresh, Sundaram |
author_role | aut |
author_sort | Suresh, Sundaram |
author_variant | s s ss |
building | Verbundindex |
bvnumber | BV040801551 |
classification_rvk | ST 300 ST 301 |
collection | ZDB-2-ENG |
ctrlnum | (OCoLC)820467164 (DE-599)BVBBV040801551 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-3-642-29491-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05302nmm a2200649zcb4500</leader><controlfield tag="001">BV040801551</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130307s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642294914</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-29491-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-29491-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)820467164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040801551</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-898</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-863</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Suresh, Sundaram</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Supervised learning with complex-valued neural networks</subfield><subfield code="c">Sundaram Suresh ; Narasimhan Sundararajan ; Ramasamy Savitha</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 170 p. 37 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies in computational intelligence</subfield><subfield code="v">421</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction -- Fully Complex-valued Multi Layer Perceptron Networks -- Fully Complex-valued Radial Basis Function Networks -- Performance Study on Complex-valued Function Approximation Problems -- Circular Complex-valued Extreme Learning Machine Classifier -- Performance Study on Real-valued Classification Problems -- Complex-valued Self-regulatory Resource Allocation Network -- Conclusions and Scope for FutureWorks (CSRAN)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p>Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems.</p></subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Zahl</subfield><subfield code="0">(DE-588)4128698-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Überwachtes Lernen</subfield><subfield code="0">(DE-588)4580264-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Überwachtes Lernen</subfield><subfield code="0">(DE-588)4580264-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Komplexe Zahl</subfield><subfield code="0">(DE-588)4128698-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sundararajan, Narasimhan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savitha, Ramasamy</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-642-29490-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies in computational intelligence</subfield><subfield code="v">421</subfield><subfield code="w">(DE-604)BV020822171</subfield><subfield code="9">421</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-29491-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025781650&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025781650&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025781650</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-29491-4</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-29491-4</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-29491-4</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-29491-4</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-29491-4</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-29491-4</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-29491-4</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-29491-4</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040801551 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T16:14:51Z |
institution | BVB |
isbn | 9783642294914 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025781650 |
oclc_num | 820467164 |
open_access_boolean | |
owner | DE-898 DE-BY-UBR DE-634 DE-573 DE-92 DE-Aug4 DE-859 DE-706 DE-863 DE-BY-FWS |
owner_facet | DE-898 DE-BY-UBR DE-634 DE-573 DE-92 DE-Aug4 DE-859 DE-706 DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (XXII, 170 p. 37 illus) |
psigel | ZDB-2-ENG |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer |
record_format | marc |
series | Studies in computational intelligence |
series2 | Studies in computational intelligence |
spellingShingle | Suresh, Sundaram Supervised learning with complex-valued neural networks Studies in computational intelligence Ingenieurwissenschaften Engineering Komplexe Zahl (DE-588)4128698-4 gnd Neuronales Netz (DE-588)4226127-2 gnd Überwachtes Lernen (DE-588)4580264-6 gnd |
subject_GND | (DE-588)4128698-4 (DE-588)4226127-2 (DE-588)4580264-6 |
title | Supervised learning with complex-valued neural networks |
title_auth | Supervised learning with complex-valued neural networks |
title_exact_search | Supervised learning with complex-valued neural networks |
title_full | Supervised learning with complex-valued neural networks Sundaram Suresh ; Narasimhan Sundararajan ; Ramasamy Savitha |
title_fullStr | Supervised learning with complex-valued neural networks Sundaram Suresh ; Narasimhan Sundararajan ; Ramasamy Savitha |
title_full_unstemmed | Supervised learning with complex-valued neural networks Sundaram Suresh ; Narasimhan Sundararajan ; Ramasamy Savitha |
title_short | Supervised learning with complex-valued neural networks |
title_sort | supervised learning with complex valued neural networks |
topic | Ingenieurwissenschaften Engineering Komplexe Zahl (DE-588)4128698-4 gnd Neuronales Netz (DE-588)4226127-2 gnd Überwachtes Lernen (DE-588)4580264-6 gnd |
topic_facet | Ingenieurwissenschaften Engineering Komplexe Zahl Neuronales Netz Überwachtes Lernen |
url | https://doi.org/10.1007/978-3-642-29491-4 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025781650&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025781650&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV020822171 |
work_keys_str_mv | AT sureshsundaram supervisedlearningwithcomplexvaluedneuralnetworks AT sundararajannarasimhan supervisedlearningwithcomplexvaluedneuralnetworks AT savitharamasamy supervisedlearningwithcomplexvaluedneuralnetworks |