Bayesian networks and influence diagrams: a guide to construction and analysis
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY [u.a.]
Springer
2013
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Information Science and Statistics
22 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 382 S. graph. Darst. |
ISBN: | 9781461451037 9781493900299 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV040771861 | ||
003 | DE-604 | ||
005 | 20210817 | ||
007 | t | ||
008 | 130222s2013 d||| |||| 00||| eng d | ||
020 | |a 9781461451037 |c Print |9 978-1-4614-5103-7 | ||
020 | |a 9781493900299 |c softcover reprint 2nd ed. |9 978-1-4939-0029-9 | ||
035 | |a (OCoLC)828810801 | ||
035 | |a (DE-599)BVBBV040771861 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-91G |a DE-29 |a DE-19 |a DE-1043 | ||
084 | |a MAT 622f |2 stub | ||
100 | 1 | |a Kjaerulff, Uffe |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bayesian networks and influence diagrams |b a guide to construction and analysis |c Uffe B. Kjærulff ; Anders L. Madsen |
250 | |a 2. ed. | ||
264 | 1 | |a New York, NY [u.a.] |b Springer |c 2013 | |
300 | |a XVII, 382 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Information Science and Statistics |v 22 | |
650 | 4 | |a Informatik | |
650 | 4 | |a Statistik | |
650 | 4 | |a Statistics | |
650 | 4 | |a Computer science | |
650 | 4 | |a Data mining | |
650 | 4 | |a Artifical intelligence | |
650 | 4 | |a Distibution (Probability theory) | |
650 | 4 | |a Mathematical statistics | |
650 | 0 | 7 | |a Wahrscheinlichkeitsnetz |0 (DE-588)4138881-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Netz |0 (DE-588)4567228-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bayes-Netz |0 (DE-588)4567228-3 |D s |
689 | 0 | 1 | |a Wahrscheinlichkeitsnetz |0 (DE-588)4138881-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Madsen, Anders L. |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4614-5104-4 |
830 | 0 | |a Information Science and Statistics |v 22 |w (DE-604)BV040672748 |9 22 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025750238&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025750238 |
Datensatz im Suchindex
_version_ | 1804150102813573120 |
---|---|
adam_text | Titel: Bayesian networks and influence diagrams
Autor: Kjaerulff, Uffe
Jahr: 2013
Contents
Part I Fundamentals
1 Introduction..................................................................................................................................3
1.1 Expert Systems..............................................................................................................3
1.1.1 Representation of Uncertainty..........................................................4
1.1.2 Normative Expert Systems..................................................................5
1.2 Rule-Based Systems ..................................................................................................5
1.2.1 Causality........................................................................................................6
1.2.2 Uncertainty in Rule-Based Systems..............................................7
1.2.3 Explaining Away......................................................................................8
1.3 Bayesian Networks......................................................................................................8
1.3.1 Inference in Bayesian Networks......................................................9
1.3.2 Construction of Bayesian Networks..............................................10
1.3.3 An Example..................................................................................................11
1.4 Bayesian Decision Problems..................................................................................13
1.5 When to Use Probabilistic Nets..........................................................................14
1.6 Concluding Remarks..................................................................................................15
2 Networks..........................................................................................................................................17
2.1 Graphs................................................................................................................................18
2.2 Graphical Models........................................................................................................20
2.2.1 Variables........................................................................................................20
2.2.2 Vertices Vs. Variables............................................................................21
2.2.3 Taxonomy of Vertices/Variables......................................................22
2.2.4 Vertex Symbols..........................................................................................23
2.2.5 Summary of Notation..............................................................................23
2.3 Evidence............................................................................................................................24
2.4 Causality............................................................................................................................24
2.5 Flow of Information in Causal Networks......................................................25
2.5.1 Serial Connections....................................................................................26
2.5.2 Diverging Connections..........................................................................28
xiii
xiv Contents
2.5.3 Converging Connections......................................................................29
2.5.4 Intercausal Inference (Explaining Away)....................................30
2.5.5 The Importance of Correct Modeling of Causality..............31
2.6 Two Equivalent Irrelevance Criteria..................................................................32
2.6.1 d-Separation Criterion............................................................................33
2.6.2 Directed Global Markov Criterion..................................................35
2.7 Summary............................................................................................................................36
3 Probabilities..................................................................................................................................39
3.1 Basics..................................................................................................................................40
3.1.1 Events..............................................................................................................40
3.1.2 Axioms............................................................................................................40
3.1.3 Conditional Probability..........................................................................41
3.2 Probability Distributions for Variables............................................................43
3.2.1 Rule of Total Probability......................................................................44
3.2.2 Graphical Representation....................................................................46
3.3 Probability Potentials ................................................................................................46
3.3.1 Normalization..............................................................................................47
3.3.2 Evidence Potentials..................................................................................49
3.3.3 Potential Calculus ....................................................................................50
3.3.4 Barren Variables........................................................................................53
3.4 Fundamental Rule and Bayes Rule..................................................................54
3.4.1 Interpretation of Bayes Rule............................................................55
3.5 Bayes Factor..................................................................................................................58
3.6 Independence..................................................................................................................59
3.6.1 Independence and DAGs......................................................................60
3.7 Chain Rule........................................................................................................................62
3.8 Summary............................................................................................................................64
4 Probabilistic Networks..........................................................................................................69
4.1 Belief Update..................................................................................................................70
4.1.1 Discrete Bayesian Networks..............................................................71
4.1.2 Conditional Linear Gaussian Bayesian Networks..................75
4.2 Decision Making Under Uncertainty................................................................79
4.2.1 Discrete Influence Diagrams..............................................................80
4.2.2 Conditional LQG Influence Diagrams..........................................89
4.2.3 Limited Memory Influence Diagrams..........................................93
4.3 Object-Oriented Probabilistic Networks........................................................95
4.3.1 Chain Rule....................................................................................................100
4.3.2 Unfolded OOPNs......................................................................................100
4.3.3 Instance Trees..............................................................................................100
4.3.4 Inheritance....................................................................................................101
4.4 Dynamic Models..........................................................................................................102
4.4.1 Time-Sliced Networks Represented as OOPNs......................104
4.5 Summary............................................................................................................................105
Contents xv
5 Solving Probabilistic Networks......................................................................................Ill
5.1 Probabilistic Inference..............................................................................................112
5.1.1 Inference in Discrete Bayesian Networks..................................112
5.1.2 Inference in CLG Bayesian Networks..........................................125
5.2 Solving Decision Models........................................................................................128
5.2.1 Solving Discrete Influence Diagrams............................................128
5.2.2 Solving CLQG Influence Diagrams..............................................132
5.2.3 Relevance Reasoning..............................................................................134
5.2.4 Solving LIMIDs........................................................................................136
5.3 Solving OOPNs ............................................................................................................140
5.4 Summary............................................................................................................................140
Part II Model Construction
6 Eliciting the Model ..................................................................................................................145
6.1 When to Use Probabilistic Networks................................................................146
6.1.1 Characteristics of Probabilistic Networks..................................147
6.1.2 Some Criteria for Using Probabilistic Networks....................148
6.2 Identifying the Variables of a Model................................................................149
6.2.1 Well-Defined Variables..........................................................................149
6.2.2 Types of Variables....................................................................................152
6.3 Eliciting the Structure................................................................................................154
6.3.1 A Basic Approach....................................................................................154
6.3.2 Idioms..............................................................................................................156
6.3.3 An Example: Extended Chest Clinic Model ............................163
6.3.4 The Generic Structure of Probabilistic Networks..................173
6.4 Model Verification........................................................................................................174
6.5 Eliciting the Numbers................................................................................................176
6.5.1 Eliciting Subjective Conditional Probabilities........................177
6.5.2 Eliciting Subjective Utilities..............................................................179
6.5.3 Specifying CPTs and UTs Through Expressions..................180
6.6 Concluding Remarks..................................................................................................183
6.7 Summary............................................................................................................................185
7 Modeling Techniques..............................................................................................................191
7.1 Structure-Related Techniques................................................................................191
7.1.1 Parent Divorcing........................................................................................192
7.1.2 Temporal Transformation....................................................................196
7.1.3 Structural and Functional Uncertainty..........................................197
7.1.4 Undirected Dependence Relations..................................................201
7.1.5 Bidirectional Relations..........................................................................204
7.1.6 Naive Bayes Model..................................................................................206
7.2 Probability Distribution-Related Techniques..............................................208
7.2.1 Measurement Uncertainty....................................................................209
7.2.2 Expert Opinions ........................................................................................211
xvi Contents
7.2.3 Node Absorption........................................................................................213
7.2.4 Set Value by Intervention....................................................................214
7.2.5 Independence of Causal Influence..................................................216
7.2.6 Mixture of Gaussian Distributions..................................................221
7.3 Decision-Related Techniques........................................ 224
7.3.1 Test Decisions ............................................................................................224
7.3.2 Missing Informational Links..............................................................227
7.3.3 Missing Observations ............................................................................229
7.3.4 Hypothesis of Highest Probability..................................................231
7.3.5 Constraints on Decisions......................................................................233
7.4 Summary............................................................................................................................235
8 Data-Driven Modeling..........................................................................................................237
8.1 The Task and Basic Assumptions......................................................................238
8.1.1 Basic Assumptions..................................................................................240
8.1.2 Equivalent Models....................................................................................240
8.2 Constraint-Based Structure Learning................................................................242
8.2.1 Statistical Hypothesis Tests................................................................242
8.2.2 Structure Constraints..............................................................................245
8.2.3 PC Algorithm..............................................................................................246
8.2.4 PC* Algorithm............................................................................................251
8.2.5 NPC Algorithm..........................................................................................251
8.3 Search and Score-Based Structure Learning................................................256
8.3.1 Space of Structures..................................................................................256
8.3.2 Search Procedures....................................................................................257
8.3.3 Score Functions..........................................................................................258
8.3.4 Learning Structure Restricted Models..........................................265
8.4 Worked Example on Structure Learning........................................................271
8.4.1 PC Algorithm..............................................................................................272
8.4.2 NPC Algorithm..........................................................................................273
8.4.3 Search and Score-Based Algorithm................................................275
8.4.4 Chow-Liu Tree..........................................................................................276
8.4.5 Comparison..................................................................................................277
8.5 Batch Parameter Learning......................................................................................278
8.5.1 Expectation-Maximization Algorithm........................................279
8.5.2 Penalized EM Algorithm......................................................................281
8.6 Sequential Parameter Learning............................................................................283
8.7 Summary............................................................................................................................285
Part III Model Analysis
9 Conflict Analysis........................................................................................................................291
9.1 Evidence-Driven Conflict Analysis....................................................................292
9.1.1 Conflict Measure........................................................................................292
!
Contents xvii
9.1.2 Tracing Conflicts ......................................................................................294
9.1.3 Conflict Resolution..................................................................................295
9.2 Hypothesis-Driven Conflict Analysis..............................................................297
9.2.1 Cost-of-Omission Measure...................................................297
9.2.2 Evidence with Conflict Impact..........................................................297
9.3 Summary............................................................................................................................299
10 Sensitivity Analysis..................................................................................................................303
10.1 Evidence Sensitivity Analysis..............................................................................304
10.1.1 Distance and Cost-of-Omission Measures................................305
10.1.2 Identify Minimum and Maximum Beliefs..................................306
10.1.3 Impact of Evidence Subsets................................................................307
10.1.4 Discrimination of Competing Hypotheses................................308
10.1.5 What-If Analysis........................................................................................309
10.1.6 Impact of Findings....................................................................................309
10.2 Parameter Sensitivity Analysis............................................................................311
10.2.1 Sensitivity Function................................................................................312
10.2.2 Sensitivity Value........................................................................................314
10.2.3 Admissible Deviation ............................................................................316
10.3 Two-Way Parameter Sensitivity Analysis......................................................317
10.3.1 Sensitivity Function................................................................................317
10.4 Parameter Tuning..........................................................................................................320
10.5 Summary............................................................................................................................323
11 Value of Information Analysis..........................................................................................327
11.1 VOI Analysis in Bayesian Networks................................................................328
11.1.1 Entropy and Mutual Information....................................................328
11.1.2 Hypothesis-Driven Value of Information Analysis..............329
11.2 VOI Analysis in Influence Diagrams................................................................333
11.3 Summary............................................................................................................................336
Quick Reference to Model Construction............................................................................341
List of Examples....................................................................................................................................351
List of Figures........................................................................................................................................355
List of Tables............................................................................................................................................365
List of Symbols......................................................................................................................................369
Reference....................................................................................................................................................371
Index..............................................................................................................................................................377
|
any_adam_object | 1 |
author | Kjaerulff, Uffe Madsen, Anders L. |
author_facet | Kjaerulff, Uffe Madsen, Anders L. |
author_role | aut aut |
author_sort | Kjaerulff, Uffe |
author_variant | u k uk a l m al alm |
building | Verbundindex |
bvnumber | BV040771861 |
classification_tum | MAT 622f |
ctrlnum | (OCoLC)828810801 (DE-599)BVBBV040771861 |
discipline | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01990nam a2200505 cb4500</leader><controlfield tag="001">BV040771861</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210817 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130222s2013 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461451037</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4614-5103-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781493900299</subfield><subfield code="c">softcover reprint 2nd ed.</subfield><subfield code="9">978-1-4939-0029-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)828810801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040771861</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1043</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 622f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kjaerulff, Uffe</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian networks and influence diagrams</subfield><subfield code="b">a guide to construction and analysis</subfield><subfield code="c">Uffe B. Kjærulff ; Anders L. Madsen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 382 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Information Science and Statistics</subfield><subfield code="v">22</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artifical intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distibution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsnetz</subfield><subfield code="0">(DE-588)4138881-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Netz</subfield><subfield code="0">(DE-588)4567228-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Netz</subfield><subfield code="0">(DE-588)4567228-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wahrscheinlichkeitsnetz</subfield><subfield code="0">(DE-588)4138881-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madsen, Anders L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4614-5104-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Information Science and Statistics</subfield><subfield code="v">22</subfield><subfield code="w">(DE-604)BV040672748</subfield><subfield code="9">22</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025750238&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025750238</subfield></datafield></record></collection> |
id | DE-604.BV040771861 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:33:35Z |
institution | BVB |
isbn | 9781461451037 9781493900299 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025750238 |
oclc_num | 828810801 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-29 DE-19 DE-BY-UBM DE-1043 |
owner_facet | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-29 DE-19 DE-BY-UBM DE-1043 |
physical | XVII, 382 S. graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer |
record_format | marc |
series | Information Science and Statistics |
series2 | Information Science and Statistics |
spelling | Kjaerulff, Uffe Verfasser aut Bayesian networks and influence diagrams a guide to construction and analysis Uffe B. Kjærulff ; Anders L. Madsen 2. ed. New York, NY [u.a.] Springer 2013 XVII, 382 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Information Science and Statistics 22 Informatik Statistik Statistics Computer science Data mining Artifical intelligence Distibution (Probability theory) Mathematical statistics Wahrscheinlichkeitsnetz (DE-588)4138881-1 gnd rswk-swf Bayes-Netz (DE-588)4567228-3 gnd rswk-swf Bayes-Netz (DE-588)4567228-3 s Wahrscheinlichkeitsnetz (DE-588)4138881-1 s DE-604 Madsen, Anders L. Verfasser aut Erscheint auch als Online-Ausgabe 978-1-4614-5104-4 Information Science and Statistics 22 (DE-604)BV040672748 22 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025750238&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kjaerulff, Uffe Madsen, Anders L. Bayesian networks and influence diagrams a guide to construction and analysis Information Science and Statistics Informatik Statistik Statistics Computer science Data mining Artifical intelligence Distibution (Probability theory) Mathematical statistics Wahrscheinlichkeitsnetz (DE-588)4138881-1 gnd Bayes-Netz (DE-588)4567228-3 gnd |
subject_GND | (DE-588)4138881-1 (DE-588)4567228-3 |
title | Bayesian networks and influence diagrams a guide to construction and analysis |
title_auth | Bayesian networks and influence diagrams a guide to construction and analysis |
title_exact_search | Bayesian networks and influence diagrams a guide to construction and analysis |
title_full | Bayesian networks and influence diagrams a guide to construction and analysis Uffe B. Kjærulff ; Anders L. Madsen |
title_fullStr | Bayesian networks and influence diagrams a guide to construction and analysis Uffe B. Kjærulff ; Anders L. Madsen |
title_full_unstemmed | Bayesian networks and influence diagrams a guide to construction and analysis Uffe B. Kjærulff ; Anders L. Madsen |
title_short | Bayesian networks and influence diagrams |
title_sort | bayesian networks and influence diagrams a guide to construction and analysis |
title_sub | a guide to construction and analysis |
topic | Informatik Statistik Statistics Computer science Data mining Artifical intelligence Distibution (Probability theory) Mathematical statistics Wahrscheinlichkeitsnetz (DE-588)4138881-1 gnd Bayes-Netz (DE-588)4567228-3 gnd |
topic_facet | Informatik Statistik Statistics Computer science Data mining Artifical intelligence Distibution (Probability theory) Mathematical statistics Wahrscheinlichkeitsnetz Bayes-Netz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025750238&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV040672748 |
work_keys_str_mv | AT kjaerulffuffe bayesiannetworksandinfluencediagramsaguidetoconstructionandanalysis AT madsenandersl bayesiannetworksandinfluencediagramsaguidetoconstructionandanalysis |