Essentials of mathematical methods in science and engineering:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Hoboken, N.J.
Wiley
c2008
|
Schlagworte: | |
Online-Zugang: | FRO01 TUM01 Volltext |
Beschreibung: | Includes bibliographical references (p. 787-792) and index 1. Functional Analysis -- 1.1 Concept of Function -- 1.2 Continuity and Limits -- 1.3 Partial Differentiation -- 1.4 Total Differential -- 1.5 Taylor Series -- 1.6 Maxima and Minima of Functions -- 1.7 Extrema of Functions with Conditions -- 1.8 Derivatives and Differentials of Composite Functions -- 1.9 Implicit Function Theorem -- 1.10 Inverse Functions -- 1.11 Integral Calculus and the Definite Integral -- 1.12 Riemann Integral -- 1.13 Improper Integrals -- 1.14 Cauchy Principal Value Integrals -- 1.15 Integrals Involving a Parameter -- 1.16 Limits of Integration Depending on a Parameter -- 1.17 Double Integrals -- 1.18 Properties of Double Integrals -- 1.19 Triple and Multiple Integrals -- Problems -- 2. Vector Analysis -- 2.1 Vector Algebra: Geometric Method -- 2.1.1 Multiplication of Vectors -- 2.2 Vector Algebra: Coordinate Representation -- 2.3 Lines and Planes -- 2.4 Vector Differential Calculus -- 2.4.1 Scalar Fields and Vector Fields -- 2.4.2 Vector Differentiation -- - 2.5 Gradient Operator -- 2.5.1 Meaning of the Gradient -- 2.5.2 Directional Derivative -- 2.6 Divergence and Curl Operators -- 2.6.1 Meaning of Divergence and the Divergence Theorem -- 2.7 Vector Integral Calculus in Two Dimensions -- 2.7.1 Arc Length and Line Integrals -- 2.7.2 Surface Area and Surface Integrals -- 2.7.3 An Alternate Way to Write Line Integrals -- 2.7.4 Green's Theorem -- 2.7.5 Interpretations of Green's Theorem -- 2.7.6 Extension to Multiply Connected Domains -- 2.8 Curl Operator and Stokes's Theorem -- 2.8.1 On the Plane -- 2.8.2 In Space -- 2.8.3 Geometric Interpretation of Curl -- 2.9 Mixed Operations with the Del Operator -- 2.10 Potential Theory -- 2.10.1 Gravitational Field of a Spherically Symmetric Star -- 2.10.2 Work Done by Gravitational Force -- 2.10.3 Path Independence and Exact Differentials -- 2.10.4 Gravity and Conservative Forces -- 2.10.5 Gravitational Potential -- 2.10.6 Gravitational Potential Energy of a System -- 2.10.7 Helmholtz Theorem -- - 2.10.8 Applications of the Helmholtz Theorem -- 2.10.9 Examples from Physics -- Problems -- 3. Generalized Coordinates and Tensors -- 3.1 Transformations Between Cartesian Coordinates -- 3.1.1 Basis Vectors and Direction Cosines -- 3.1.2 Transformation Matrix and the Orthogonality Relation -- 3.1.3 Inverse Transformation Matrix -- 3.2 Cartesian Tensors -- 3.2.1 Algebraic Properties of Tensors -- 3.2.2 Kronecker Delta and the Permutation Symbol -- 3.3 Generalized Coordinates -- 3.3.1 Coordinate Curves and Surfaces -- 3.3.2 Why Upper and Lower Indices -- 3.4 General Tensors -- 3.4.1 Einstein Summation Convention -- 3.4.2 Line Element -- 3.4.3 Metric Tensor -- 3.4.4 How to Raise and Lower Indices -- 3.4.5 Metric Tensor and the Basis Vectors -- 3.4.6 Displacement Vector -- 3.4.7 Transformation of Scalar Functions and Line Integrals -- 3.4.8 Area Element in Generalized Coordinates -- 3.4.9 Area of a Surface -- 3.4.10 Volume Element in Generalized Coordinates -- - 3.4.11 Invariance and Covariance -- 3.5 Differential Operators in Generalized Coordinates -- 3.5.1 Gradient -- 3.5.2 Divergence -- 3.5.3 Curl -- 3.5.4 Laplacian |
Beschreibung: | 1 Online-Ressource (xxvi, 802 p.) |
ISBN: | 0470378026 0470378042 9780470378021 9780470378045 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV040768959 | ||
003 | DE-604 | ||
005 | 20130827 | ||
007 | cr|uuu---uuuuu | ||
008 | 130221s2008 |||| o||u| ||||||eng d | ||
020 | |a 0470378026 |c Online |9 0-470-37802-6 | ||
020 | |a 0470378042 |9 0-470-37804-2 | ||
020 | |a 9780470378021 |c Online |9 978-0-470-37802-1 | ||
020 | |a 9780470378045 |9 978-0-470-37804-5 | ||
024 | 7 | |a 10.1002/9780470378045 |2 doi | |
035 | |a (OCoLC)254543749 | ||
035 | |a (DE-599)BVBBV040768959 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-861 | ||
082 | 0 | |a 501.51 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a MAT 021f |2 stub | ||
245 | 1 | 0 | |a Essentials of mathematical methods in science and engineering |c Ş. Selçuk Bayın |
264 | 1 | |a Hoboken, N.J. |b Wiley |c c2008 | |
300 | |a 1 Online-Ressource (xxvi, 802 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 787-792) and index | ||
500 | |a 1. Functional Analysis -- 1.1 Concept of Function -- 1.2 Continuity and Limits -- 1.3 Partial Differentiation -- 1.4 Total Differential -- 1.5 Taylor Series -- 1.6 Maxima and Minima of Functions -- 1.7 Extrema of Functions with Conditions -- 1.8 Derivatives and Differentials of Composite Functions -- 1.9 Implicit Function Theorem -- 1.10 Inverse Functions -- 1.11 Integral Calculus and the Definite Integral -- 1.12 Riemann Integral -- 1.13 Improper Integrals -- 1.14 Cauchy Principal Value Integrals -- 1.15 Integrals Involving a Parameter -- 1.16 Limits of Integration Depending on a Parameter -- 1.17 Double Integrals -- 1.18 Properties of Double Integrals -- 1.19 Triple and Multiple Integrals -- Problems -- 2. Vector Analysis -- 2.1 Vector Algebra: Geometric Method -- 2.1.1 Multiplication of Vectors -- 2.2 Vector Algebra: Coordinate Representation -- 2.3 Lines and Planes -- 2.4 Vector Differential Calculus -- 2.4.1 Scalar Fields and Vector Fields -- 2.4.2 Vector Differentiation -- | ||
500 | |a - 2.5 Gradient Operator -- 2.5.1 Meaning of the Gradient -- 2.5.2 Directional Derivative -- 2.6 Divergence and Curl Operators -- 2.6.1 Meaning of Divergence and the Divergence Theorem -- 2.7 Vector Integral Calculus in Two Dimensions -- 2.7.1 Arc Length and Line Integrals -- 2.7.2 Surface Area and Surface Integrals -- 2.7.3 An Alternate Way to Write Line Integrals -- 2.7.4 Green's Theorem -- 2.7.5 Interpretations of Green's Theorem -- 2.7.6 Extension to Multiply Connected Domains -- 2.8 Curl Operator and Stokes's Theorem -- 2.8.1 On the Plane -- 2.8.2 In Space -- 2.8.3 Geometric Interpretation of Curl -- 2.9 Mixed Operations with the Del Operator -- 2.10 Potential Theory -- 2.10.1 Gravitational Field of a Spherically Symmetric Star -- 2.10.2 Work Done by Gravitational Force -- 2.10.3 Path Independence and Exact Differentials -- 2.10.4 Gravity and Conservative Forces -- 2.10.5 Gravitational Potential -- 2.10.6 Gravitational Potential Energy of a System -- 2.10.7 Helmholtz Theorem -- | ||
500 | |a - 2.10.8 Applications of the Helmholtz Theorem -- 2.10.9 Examples from Physics -- Problems -- 3. Generalized Coordinates and Tensors -- 3.1 Transformations Between Cartesian Coordinates -- 3.1.1 Basis Vectors and Direction Cosines -- 3.1.2 Transformation Matrix and the Orthogonality Relation -- 3.1.3 Inverse Transformation Matrix -- 3.2 Cartesian Tensors -- 3.2.1 Algebraic Properties of Tensors -- 3.2.2 Kronecker Delta and the Permutation Symbol -- 3.3 Generalized Coordinates -- 3.3.1 Coordinate Curves and Surfaces -- 3.3.2 Why Upper and Lower Indices -- 3.4 General Tensors -- 3.4.1 Einstein Summation Convention -- 3.4.2 Line Element -- 3.4.3 Metric Tensor -- 3.4.4 How to Raise and Lower Indices -- 3.4.5 Metric Tensor and the Basis Vectors -- 3.4.6 Displacement Vector -- 3.4.7 Transformation of Scalar Functions and Line Integrals -- 3.4.8 Area Element in Generalized Coordinates -- 3.4.9 Area of a Surface -- 3.4.10 Volume Element in Generalized Coordinates -- | ||
500 | |a - 3.4.11 Invariance and Covariance -- 3.5 Differential Operators in Generalized Coordinates -- 3.5.1 Gradient -- 3.5.2 Divergence -- 3.5.3 Curl -- 3.5.4 Laplacian | ||
650 | 7 | |a SCIENCE / Philosophy & Social Aspects |2 bisacsh | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Naturwissenschaft | |
650 | 4 | |a Science / Mathematics | |
650 | 4 | |a Science / Methodology | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a SCIENCE / Philosophy & Social Aspects / bisacsh | |
650 | 0 | 7 | |a Technische Mathematik |0 (DE-588)4827059-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Technische Mathematik |0 (DE-588)4827059-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Bayin, Ş. Selçuk |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 0-470-34379-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-470-34379-1 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9780470378045 |x Verlag |3 Volltext |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q FHR_PDA_WIC | |
940 | 1 | |q UBG_PDA_WIC | |
999 | |a oai:aleph.bib-bvb.de:BVB01-025747377 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9780470378045 |l FRO01 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9780470378045 |l TUM01 |p ZDB-35-WIC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804150098668552192 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV040768959 |
classification_rvk | SK 950 |
classification_tum | MAT 021f |
collection | ZDB-35-WIC |
ctrlnum | (OCoLC)254543749 (DE-599)BVBBV040768959 |
dewey-full | 501.51 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 501 - Philosophy and theory |
dewey-raw | 501.51 |
dewey-search | 501.51 |
dewey-sort | 3501.51 |
dewey-tens | 500 - Natural sciences and mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05445nmm a2200625zc 4500</leader><controlfield tag="001">BV040768959</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130827 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130221s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470378026</subfield><subfield code="c">Online</subfield><subfield code="9">0-470-37802-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470378042</subfield><subfield code="9">0-470-37804-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470378021</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-470-37802-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470378045</subfield><subfield code="9">978-0-470-37804-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9780470378045</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254543749</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040768959</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-861</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">501.51</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 021f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Essentials of mathematical methods in science and engineering</subfield><subfield code="c">Ş. Selçuk Bayın</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, N.J.</subfield><subfield code="b">Wiley</subfield><subfield code="c">c2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxvi, 802 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 787-792) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Functional Analysis -- 1.1 Concept of Function -- 1.2 Continuity and Limits -- 1.3 Partial Differentiation -- 1.4 Total Differential -- 1.5 Taylor Series -- 1.6 Maxima and Minima of Functions -- 1.7 Extrema of Functions with Conditions -- 1.8 Derivatives and Differentials of Composite Functions -- 1.9 Implicit Function Theorem -- 1.10 Inverse Functions -- 1.11 Integral Calculus and the Definite Integral -- 1.12 Riemann Integral -- 1.13 Improper Integrals -- 1.14 Cauchy Principal Value Integrals -- 1.15 Integrals Involving a Parameter -- 1.16 Limits of Integration Depending on a Parameter -- 1.17 Double Integrals -- 1.18 Properties of Double Integrals -- 1.19 Triple and Multiple Integrals -- Problems -- 2. Vector Analysis -- 2.1 Vector Algebra: Geometric Method -- 2.1.1 Multiplication of Vectors -- 2.2 Vector Algebra: Coordinate Representation -- 2.3 Lines and Planes -- 2.4 Vector Differential Calculus -- 2.4.1 Scalar Fields and Vector Fields -- 2.4.2 Vector Differentiation -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 2.5 Gradient Operator -- 2.5.1 Meaning of the Gradient -- 2.5.2 Directional Derivative -- 2.6 Divergence and Curl Operators -- 2.6.1 Meaning of Divergence and the Divergence Theorem -- 2.7 Vector Integral Calculus in Two Dimensions -- 2.7.1 Arc Length and Line Integrals -- 2.7.2 Surface Area and Surface Integrals -- 2.7.3 An Alternate Way to Write Line Integrals -- 2.7.4 Green's Theorem -- 2.7.5 Interpretations of Green's Theorem -- 2.7.6 Extension to Multiply Connected Domains -- 2.8 Curl Operator and Stokes's Theorem -- 2.8.1 On the Plane -- 2.8.2 In Space -- 2.8.3 Geometric Interpretation of Curl -- 2.9 Mixed Operations with the Del Operator -- 2.10 Potential Theory -- 2.10.1 Gravitational Field of a Spherically Symmetric Star -- 2.10.2 Work Done by Gravitational Force -- 2.10.3 Path Independence and Exact Differentials -- 2.10.4 Gravity and Conservative Forces -- 2.10.5 Gravitational Potential -- 2.10.6 Gravitational Potential Energy of a System -- 2.10.7 Helmholtz Theorem -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 2.10.8 Applications of the Helmholtz Theorem -- 2.10.9 Examples from Physics -- Problems -- 3. Generalized Coordinates and Tensors -- 3.1 Transformations Between Cartesian Coordinates -- 3.1.1 Basis Vectors and Direction Cosines -- 3.1.2 Transformation Matrix and the Orthogonality Relation -- 3.1.3 Inverse Transformation Matrix -- 3.2 Cartesian Tensors -- 3.2.1 Algebraic Properties of Tensors -- 3.2.2 Kronecker Delta and the Permutation Symbol -- 3.3 Generalized Coordinates -- 3.3.1 Coordinate Curves and Surfaces -- 3.3.2 Why Upper and Lower Indices -- 3.4 General Tensors -- 3.4.1 Einstein Summation Convention -- 3.4.2 Line Element -- 3.4.3 Metric Tensor -- 3.4.4 How to Raise and Lower Indices -- 3.4.5 Metric Tensor and the Basis Vectors -- 3.4.6 Displacement Vector -- 3.4.7 Transformation of Scalar Functions and Line Integrals -- 3.4.8 Area Element in Generalized Coordinates -- 3.4.9 Area of a Surface -- 3.4.10 Volume Element in Generalized Coordinates -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 3.4.11 Invariance and Covariance -- 3.5 Differential Operators in Generalized Coordinates -- 3.5.1 Gradient -- 3.5.2 Divergence -- 3.5.3 Curl -- 3.5.4 Laplacian</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Philosophy & Social Aspects</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science / Methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SCIENCE / Philosophy & Social Aspects / bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Mathematik</subfield><subfield code="0">(DE-588)4827059-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Technische Mathematik</subfield><subfield code="0">(DE-588)4827059-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bayin, Ş. Selçuk</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">0-470-34379-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-470-34379-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9780470378045</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHR_PDA_WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025747377</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9780470378045</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9780470378045</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040768959 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:33:32Z |
institution | BVB |
isbn | 0470378026 0470378042 9780470378021 9780470378045 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025747377 |
oclc_num | 254543749 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-861 |
owner_facet | DE-91 DE-BY-TUM DE-861 |
physical | 1 Online-Ressource (xxvi, 802 p.) |
psigel | ZDB-35-WIC FHR_PDA_WIC UBG_PDA_WIC ZDB-35-WIC FRO_PDA_WIC |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley |
record_format | marc |
spelling | Essentials of mathematical methods in science and engineering Ş. Selçuk Bayın Hoboken, N.J. Wiley c2008 1 Online-Ressource (xxvi, 802 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 787-792) and index 1. Functional Analysis -- 1.1 Concept of Function -- 1.2 Continuity and Limits -- 1.3 Partial Differentiation -- 1.4 Total Differential -- 1.5 Taylor Series -- 1.6 Maxima and Minima of Functions -- 1.7 Extrema of Functions with Conditions -- 1.8 Derivatives and Differentials of Composite Functions -- 1.9 Implicit Function Theorem -- 1.10 Inverse Functions -- 1.11 Integral Calculus and the Definite Integral -- 1.12 Riemann Integral -- 1.13 Improper Integrals -- 1.14 Cauchy Principal Value Integrals -- 1.15 Integrals Involving a Parameter -- 1.16 Limits of Integration Depending on a Parameter -- 1.17 Double Integrals -- 1.18 Properties of Double Integrals -- 1.19 Triple and Multiple Integrals -- Problems -- 2. Vector Analysis -- 2.1 Vector Algebra: Geometric Method -- 2.1.1 Multiplication of Vectors -- 2.2 Vector Algebra: Coordinate Representation -- 2.3 Lines and Planes -- 2.4 Vector Differential Calculus -- 2.4.1 Scalar Fields and Vector Fields -- 2.4.2 Vector Differentiation -- - 2.5 Gradient Operator -- 2.5.1 Meaning of the Gradient -- 2.5.2 Directional Derivative -- 2.6 Divergence and Curl Operators -- 2.6.1 Meaning of Divergence and the Divergence Theorem -- 2.7 Vector Integral Calculus in Two Dimensions -- 2.7.1 Arc Length and Line Integrals -- 2.7.2 Surface Area and Surface Integrals -- 2.7.3 An Alternate Way to Write Line Integrals -- 2.7.4 Green's Theorem -- 2.7.5 Interpretations of Green's Theorem -- 2.7.6 Extension to Multiply Connected Domains -- 2.8 Curl Operator and Stokes's Theorem -- 2.8.1 On the Plane -- 2.8.2 In Space -- 2.8.3 Geometric Interpretation of Curl -- 2.9 Mixed Operations with the Del Operator -- 2.10 Potential Theory -- 2.10.1 Gravitational Field of a Spherically Symmetric Star -- 2.10.2 Work Done by Gravitational Force -- 2.10.3 Path Independence and Exact Differentials -- 2.10.4 Gravity and Conservative Forces -- 2.10.5 Gravitational Potential -- 2.10.6 Gravitational Potential Energy of a System -- 2.10.7 Helmholtz Theorem -- - 2.10.8 Applications of the Helmholtz Theorem -- 2.10.9 Examples from Physics -- Problems -- 3. Generalized Coordinates and Tensors -- 3.1 Transformations Between Cartesian Coordinates -- 3.1.1 Basis Vectors and Direction Cosines -- 3.1.2 Transformation Matrix and the Orthogonality Relation -- 3.1.3 Inverse Transformation Matrix -- 3.2 Cartesian Tensors -- 3.2.1 Algebraic Properties of Tensors -- 3.2.2 Kronecker Delta and the Permutation Symbol -- 3.3 Generalized Coordinates -- 3.3.1 Coordinate Curves and Surfaces -- 3.3.2 Why Upper and Lower Indices -- 3.4 General Tensors -- 3.4.1 Einstein Summation Convention -- 3.4.2 Line Element -- 3.4.3 Metric Tensor -- 3.4.4 How to Raise and Lower Indices -- 3.4.5 Metric Tensor and the Basis Vectors -- 3.4.6 Displacement Vector -- 3.4.7 Transformation of Scalar Functions and Line Integrals -- 3.4.8 Area Element in Generalized Coordinates -- 3.4.9 Area of a Surface -- 3.4.10 Volume Element in Generalized Coordinates -- - 3.4.11 Invariance and Covariance -- 3.5 Differential Operators in Generalized Coordinates -- 3.5.1 Gradient -- 3.5.2 Divergence -- 3.5.3 Curl -- 3.5.4 Laplacian SCIENCE / Philosophy & Social Aspects bisacsh Mathematik Naturwissenschaft Science / Mathematics Science / Methodology Engineering mathematics SCIENCE / Philosophy & Social Aspects / bisacsh Technische Mathematik (DE-588)4827059-3 gnd rswk-swf Technische Mathematik (DE-588)4827059-3 s 1\p DE-604 Bayin, Ş. Selçuk Sonstige oth Erscheint auch als Druckausgabe 0-470-34379-6 Erscheint auch als Druckausgabe 978-0-470-34379-1 https://onlinelibrary.wiley.com/doi/book/10.1002/9780470378045 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Essentials of mathematical methods in science and engineering SCIENCE / Philosophy & Social Aspects bisacsh Mathematik Naturwissenschaft Science / Mathematics Science / Methodology Engineering mathematics SCIENCE / Philosophy & Social Aspects / bisacsh Technische Mathematik (DE-588)4827059-3 gnd |
subject_GND | (DE-588)4827059-3 |
title | Essentials of mathematical methods in science and engineering |
title_auth | Essentials of mathematical methods in science and engineering |
title_exact_search | Essentials of mathematical methods in science and engineering |
title_full | Essentials of mathematical methods in science and engineering Ş. Selçuk Bayın |
title_fullStr | Essentials of mathematical methods in science and engineering Ş. Selçuk Bayın |
title_full_unstemmed | Essentials of mathematical methods in science and engineering Ş. Selçuk Bayın |
title_short | Essentials of mathematical methods in science and engineering |
title_sort | essentials of mathematical methods in science and engineering |
topic | SCIENCE / Philosophy & Social Aspects bisacsh Mathematik Naturwissenschaft Science / Mathematics Science / Methodology Engineering mathematics SCIENCE / Philosophy & Social Aspects / bisacsh Technische Mathematik (DE-588)4827059-3 gnd |
topic_facet | SCIENCE / Philosophy & Social Aspects Mathematik Naturwissenschaft Science / Mathematics Science / Methodology Engineering mathematics SCIENCE / Philosophy & Social Aspects / bisacsh Technische Mathematik |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9780470378045 |
work_keys_str_mv | AT bayinsselcuk essentialsofmathematicalmethodsinscienceandengineering |