The mathematics of infinity: a guide to great ideas
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Hoboken, N.J.
Wiley-Interscience
c2006
|
Schriftenreihe: | Pure and applied mathematics (John Wiley & Sons : Unnumbered)
|
Schlagworte: | |
Online-Zugang: | TUM01 Volltext |
Beschreibung: | Includes bibliographical references (p. 283) and index Elementary set theory -- Functions -- Counting infinite sets -- Infinite cardinals -- Well ordered sets -- Inductions and numbers -- Prime numbers -- Logic and meta-mathematics The Mathematics of Infinity addresses infinite cardinals and is appropriate for readers at any level. Inviting the reader to imagine constructing an infinite chain infinities, which are called cardinals, the author successfully prepares and motivates readers for topics covered within the book |
Beschreibung: | 1 Online-Ressource (xii, 287 p.) 25 cm |
ISBN: | 0470049138 0470049146 9780470049136 9780470049143 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV040768947 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 130221s2006 |||| o||u| ||||||eng d | ||
020 | |a 0470049138 |c Online |9 0-470-04913-8 | ||
020 | |a 0470049146 |c Online |9 0-470-04914-6 | ||
020 | |a 9780470049136 |c Online |9 978-0-470-04913-6 | ||
020 | |a 9780470049143 |c Online |9 978-0-470-04914-3 | ||
024 | 7 | |a 10.1002/0470049146 |2 doi | |
035 | |a (OCoLC)694961332 | ||
035 | |a (DE-599)BVBBV040768947 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 511.3/22 | |
245 | 1 | 0 | |a The mathematics of infinity |b a guide to great ideas |c Theodore G. Faticoni |
264 | 1 | |a Hoboken, N.J. |b Wiley-Interscience |c c2006 | |
300 | |a 1 Online-Ressource (xii, 287 p.) |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pure and applied mathematics (John Wiley & Sons : Unnumbered) | |
500 | |a Includes bibliographical references (p. 283) and index | ||
500 | |a Elementary set theory -- Functions -- Counting infinite sets -- Infinite cardinals -- Well ordered sets -- Inductions and numbers -- Prime numbers -- Logic and meta-mathematics | ||
500 | |a The Mathematics of Infinity addresses infinite cardinals and is appropriate for readers at any level. Inviting the reader to imagine constructing an infinite chain infinities, which are called cardinals, the author successfully prepares and motivates readers for topics covered within the book | ||
533 | |a Online-Ausgabe |b Somerset, N.J. |c Wiley InterScience605 L |a Online-Ausgabe | ||
650 | 7 | |a MATHEMATICS / Set Theory |2 bisacsh | |
650 | 4 | |a Cardinal numbers | |
650 | 4 | |a Set theory | |
650 | 4 | |a Infinite | |
650 | 4 | |a MATHEMATICS / Set Theory / bisacsh | |
650 | 0 | 7 | |a Kardinalzahl |0 (DE-588)4163318-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unendlichkeit |0 (DE-588)4136067-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 0 | 1 | |a Unendlichkeit |0 (DE-588)4136067-9 |D s |
689 | 0 | 2 | |a Kardinalzahl |0 (DE-588)4163318-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Faticoni, Theodore G., (Theodore Gerard) |e Sonstige |4 oth | |
710 | 2 | |a John Wiley & Sons |e Sonstige |4 oth | |
776 | 0 | 8 | |i Reproduktion von |t The mathematics of infinity |d c2006 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 0-471-79432-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-471-79432-5 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/0470049146 |x Verlag |3 Volltext |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q FHR_PDA_WIC | |
999 | |a oai:aleph.bib-bvb.de:BVB01-025747365 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/0470049146 |l TUM01 |p ZDB-35-WIC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804150098662260736 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV040768947 |
collection | ZDB-35-WIC |
ctrlnum | (OCoLC)694961332 (DE-599)BVBBV040768947 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02926nmm a2200625zc 4500</leader><controlfield tag="001">BV040768947</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130221s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470049138</subfield><subfield code="c">Online</subfield><subfield code="9">0-470-04913-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470049146</subfield><subfield code="c">Online</subfield><subfield code="9">0-470-04914-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470049136</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-470-04913-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470049143</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-470-04914-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/0470049146</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)694961332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040768947</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The mathematics of infinity</subfield><subfield code="b">a guide to great ideas</subfield><subfield code="c">Theodore G. Faticoni</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, N.J.</subfield><subfield code="b">Wiley-Interscience</subfield><subfield code="c">c2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 287 p.)</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pure and applied mathematics (John Wiley & Sons : Unnumbered)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 283) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Elementary set theory -- Functions -- Counting infinite sets -- Infinite cardinals -- Well ordered sets -- Inductions and numbers -- Prime numbers -- Logic and meta-mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Mathematics of Infinity addresses infinite cardinals and is appropriate for readers at any level. Inviting the reader to imagine constructing an infinite chain infinities, which are called cardinals, the author successfully prepares and motivates readers for topics covered within the book</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Online-Ausgabe</subfield><subfield code="b">Somerset, N.J.</subfield><subfield code="c">Wiley InterScience605 L</subfield><subfield code="a">Online-Ausgabe</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Set Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cardinal numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infinite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS / Set Theory / bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kardinalzahl</subfield><subfield code="0">(DE-588)4163318-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlichkeit</subfield><subfield code="0">(DE-588)4136067-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unendlichkeit</subfield><subfield code="0">(DE-588)4136067-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kardinalzahl</subfield><subfield code="0">(DE-588)4163318-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Faticoni, Theodore G., (Theodore Gerard)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">John Wiley & Sons</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Reproduktion von</subfield><subfield code="t">The mathematics of infinity</subfield><subfield code="d">c2006</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">0-471-79432-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-471-79432-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/0470049146</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHR_PDA_WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025747365</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/0470049146</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040768947 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:33:31Z |
institution | BVB |
isbn | 0470049138 0470049146 9780470049136 9780470049143 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025747365 |
oclc_num | 694961332 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xii, 287 p.) 25 cm |
psigel | ZDB-35-WIC FHR_PDA_WIC |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Wiley-Interscience |
record_format | marc |
series2 | Pure and applied mathematics (John Wiley & Sons : Unnumbered) |
spelling | The mathematics of infinity a guide to great ideas Theodore G. Faticoni Hoboken, N.J. Wiley-Interscience c2006 1 Online-Ressource (xii, 287 p.) 25 cm txt rdacontent c rdamedia cr rdacarrier Pure and applied mathematics (John Wiley & Sons : Unnumbered) Includes bibliographical references (p. 283) and index Elementary set theory -- Functions -- Counting infinite sets -- Infinite cardinals -- Well ordered sets -- Inductions and numbers -- Prime numbers -- Logic and meta-mathematics The Mathematics of Infinity addresses infinite cardinals and is appropriate for readers at any level. Inviting the reader to imagine constructing an infinite chain infinities, which are called cardinals, the author successfully prepares and motivates readers for topics covered within the book Online-Ausgabe Somerset, N.J. Wiley InterScience605 L Online-Ausgabe MATHEMATICS / Set Theory bisacsh Cardinal numbers Set theory Infinite MATHEMATICS / Set Theory / bisacsh Kardinalzahl (DE-588)4163318-0 gnd rswk-swf Mengenlehre (DE-588)4074715-3 gnd rswk-swf Unendlichkeit (DE-588)4136067-9 gnd rswk-swf Mengenlehre (DE-588)4074715-3 s Unendlichkeit (DE-588)4136067-9 s Kardinalzahl (DE-588)4163318-0 s 1\p DE-604 Faticoni, Theodore G., (Theodore Gerard) Sonstige oth John Wiley & Sons Sonstige oth Reproduktion von The mathematics of infinity c2006 Erscheint auch als Druckausgabe 0-471-79432-5 Erscheint auch als Druckausgabe 978-0-471-79432-5 https://onlinelibrary.wiley.com/doi/book/10.1002/0470049146 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | The mathematics of infinity a guide to great ideas MATHEMATICS / Set Theory bisacsh Cardinal numbers Set theory Infinite MATHEMATICS / Set Theory / bisacsh Kardinalzahl (DE-588)4163318-0 gnd Mengenlehre (DE-588)4074715-3 gnd Unendlichkeit (DE-588)4136067-9 gnd |
subject_GND | (DE-588)4163318-0 (DE-588)4074715-3 (DE-588)4136067-9 |
title | The mathematics of infinity a guide to great ideas |
title_auth | The mathematics of infinity a guide to great ideas |
title_exact_search | The mathematics of infinity a guide to great ideas |
title_full | The mathematics of infinity a guide to great ideas Theodore G. Faticoni |
title_fullStr | The mathematics of infinity a guide to great ideas Theodore G. Faticoni |
title_full_unstemmed | The mathematics of infinity a guide to great ideas Theodore G. Faticoni |
title_short | The mathematics of infinity |
title_sort | the mathematics of infinity a guide to great ideas |
title_sub | a guide to great ideas |
topic | MATHEMATICS / Set Theory bisacsh Cardinal numbers Set theory Infinite MATHEMATICS / Set Theory / bisacsh Kardinalzahl (DE-588)4163318-0 gnd Mengenlehre (DE-588)4074715-3 gnd Unendlichkeit (DE-588)4136067-9 gnd |
topic_facet | MATHEMATICS / Set Theory Cardinal numbers Set theory Infinite MATHEMATICS / Set Theory / bisacsh Kardinalzahl Mengenlehre Unendlichkeit |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/0470049146 |
work_keys_str_mv | AT faticonitheodoregtheodoregerard themathematicsofinfinityaguidetogreatideas AT johnwileysons themathematicsofinfinityaguidetogreatideas |